共 50 条
One-Shot Lossy Quantum Data Compression
被引:31
|作者:
Datta, Nilanjana
[1
]
Renes, Joseph M.
[2
]
Renner, Renato
[2
]
Wilde, Mark M.
[3
]
机构:
[1] Univ Cambridge, Stat Lab, Cambridge CB30WB, England
[2] ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland
[3] McGill Univ, Sch Comp Sci, Montreal, PQ H3A 2A7, Canada
基金:
欧洲研究理事会;
瑞士国家科学基金会;
关键词:
Entanglement assistance;
hypothesis testing;
relative entropy;
lossy quantum data compression;
max-information;
min- and max-entropy;
quantum rate distortion;
RATE-DISTORTION THEORY;
INFORMATION;
CHANNELS;
STATES;
SIMULATION;
ENTROPIES;
FIDELITY;
D O I:
10.1109/TIT.2013.2283723
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
We provide a framework for one-shot quantum rate distortion coding, in which the goal is to determine the minimum number of qubits required to compress quantum information as a function of the probability that the distortion incurred upon decompression exceeds some specified level. We obtain a one-shot characterization of the minimum qubit compression size for an entanglement-assisted quantum rate-distortion code in terms of the smooth max-information, a quantity previously employed in the one-shot quantum reverse Shannon theorem. Next, we show how this characterization converges to the known expression for the entanglement-assisted quantum rate distortion function for asymptotically many copies of a memoryless quantum information source. Finally, we give a tight, finite blocklength characterization for the entanglement-assisted minimum qubit compression size of a memoryless isotropic qubit source subject to an average symbolwise distortion constraint.
引用
收藏
页码:8057 / 8076
页数:20
相关论文