Stochastic model for scale-free networks with cutoffs

被引:2
|
作者
Simas, Tiago [1 ]
Rocha, Luis M. [1 ,2 ,3 ]
机构
[1] Indiana Univ, Cognit Sci Program, Bloomington, IN 47406 USA
[2] Indiana Univ, Sch Informat, Bloomington, IN 47406 USA
[3] Inst Gulbenkian Ciencias, Oeiras, Portugal
来源
PHYSICAL REVIEW E | 2008年 / 78卷 / 06期
关键词
D O I
10.1103/PhysRevE.78.066116
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We propose and analyze a stochastic model which explains, analytically, the cutoff behavior of real scale-free networks previously modeled computationally by Amaral et al. [Proc. Natl. Acad. Sci. U. S. A. 97, 11149 (2000)] and others. We present a mathematical model that can explain several existing computational scale-free network generation models. This yields a theoretical basis to understand cutoff behavior in complex networks, previously treated only with simulations using distinct models. Therefore, ours is an integrative approach that unifies the existing literature on cutoff behavior in scale-free networks. Furthermore, our mathematical model allows us to reach conclusions not hitherto possible with computational models: the ability to predict the equilibrium point of active vertices and to relate the growth of networks with the probability of aging. We also discuss how our model introduces a useful way to classify scale free behavior of complex networks.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Stochastic multiresonance in the Ising model on scale-free networks
    Krawiecki, A.
    [J]. ACTA PHYSICA POLONICA B, 2008, 39 (05): : 1103 - 1114
  • [2] Structural stochastic multiresonance in the Ising model on scale-free networks
    A. Krawiecki
    [J]. The European Physical Journal B, 2009, 69 : 81 - 86
  • [3] Stochastic Resonance in the Majority Vote Model on Scale-Free Networks
    Krawiecki, A.
    Kosinski, R. A.
    [J]. ACTA PHYSICA POLONICA A, 2020, 138 (06) : 824 - 833
  • [4] Structural stochastic multiresonance in the Ising model on scale-free networks
    Krawiecki, A.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2009, 69 (01): : 81 - 86
  • [5] Stochastic opinion formation in scale-free networks
    Bartolozzi, M
    Leinweber, DB
    Thomas, AW
    [J]. PHYSICAL REVIEW E, 2005, 72 (04)
  • [6] Dynamical behavior of a stochastic SIQS epidemic model on scale-free networks
    Rundong Zhao
    Qiming Liu
    Meici Sun
    [J]. Journal of Applied Mathematics and Computing, 2022, 68 : 813 - 838
  • [7] Dynamical behavior of a stochastic SIQS epidemic model on scale-free networks
    Zhao, Rundong
    Liu, Qiming
    Sun, Meici
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (02) : 813 - 838
  • [8] An improved scale-free networks model
    Wang, Ting
    Cai, Guoyong
    Huang, Xiong
    [J]. MODERN COMPUTER SCIENCE AND APPLICATIONS (MCSA 2016), 2016, : 309 - 316
  • [9] Exactly scale-free scale-free networks
    Zhang, Linjun
    Small, Michael
    Judd, Kevin
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 433 : 182 - 197
  • [10] Traffic Properties for Stochastic Routing on Scale-Free Networks
    Hayashi, Yukio
    Ono, Yasumasa
    [J]. IEICE TRANSACTIONS ON COMMUNICATIONS, 2011, E94B (05) : 1311 - 1322