Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas

被引:98
|
作者
Way, Gregory P. [1 ]
Sanchez-Vega, Francisco [2 ,3 ]
La, Konnor [3 ]
Armenia, Joshua [3 ]
Chatila, Walid K. [3 ]
Luna, Augustin [4 ,5 ]
Sander, Chris [4 ,5 ]
Cherniack, Andrew D. [6 ,7 ]
Mina, Marco [8 ]
Ciriello, Giovanni [8 ]
Schultz, Nikolaus [9 ]
Sanchez, Yolanda [10 ]
Greene, Casey S. [2 ]
机构
[1] Univ Penn, Perelman Sch Med, Genom & Computat Biol Grad Grp, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Syst Pharmacol & Translat Therapeut, Philadelphia, PA 19104 USA
[3] Mem Sloan Kettering Canc Ctr, Marie Josee & Henry R Kravis Ctr Mol Oncol, New York, NY 10065 USA
[4] Dana Farber Canc Inst, cBio Ctr, Dept Biostat & Computat Biol, Boston, MA 02215 USA
[5] Harvard Med Sch, Dept Cell Biol, Boston, MA 02115 USA
[6] Eli & Edythe L Broad Inst Massachusetts Inst Tech, Cambridge, MA 02142 USA
[7] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA 02215 USA
[8] Univ Lausanne, Dept Computat Biol, Lausanne, Switzerland
[9] Mem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, New York, NY 10065 USA
[10] Norris Cotton Canc Ctr, Geisel Sch Med Dartmouth, Dept Mol Syst Biol, Hanover, NH 03755 USA
来源
CELL REPORTS | 2018年 / 23卷 / 01期
关键词
PRECISION ONCOLOGY; SELUMETINIB; MUTATIONS; SIGNATURES; PROTEIN; GENE; BRAF; PATHOGENESIS; ONCOGENES; SELECTION;
D O I
10.1016/j.celrep.2018.03.046
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Precision oncology uses genomic evidence to match patients with treatment but often fails to identify all patients who may respond. The transcriptome of these "hidden responders'' may reveal responsive molecular states. We describe and evaluate a machine-learning approach to classify aberrant pathway activity in tumors, which may aid in hidden responder identification. The algorithm integrates RNA-seq, copy number, and mutations from 33 different cancer types across The Cancer Genome Atlas (TCGA) PanCanAtlas project to predict aberrant molecular states in tumors. Applied to the Ras pathway, the method detects Ras activation across cancer types and identifies phenocopying variants. The model, trained on human tumors, can predict response to MEK inhibitors in wild-type Ras cell lines. We also present data that suggest that multiple hits in the Ras pathway confer increased Ras activity. The transcriptome is underused in precision oncology and, combined with machine learning, can aid in the identification of hidden responders.
引用
收藏
页码:172 / +
页数:12
相关论文
共 50 条
  • [41] A Pan-Cancer Approach to Predict Responsiveness to Immune Checkpoint Inhibitors by Machine Learning
    Polano, Maurizio
    Chierici, Marco
    Dal Bo, Michele
    Gentilini, Davide
    Di Cintio, Federica
    Baboci, Lorena
    Gibbs, David L.
    Furlanello, Cesare
    Toffoli, Giuseppe
    [J]. CANCERS, 2019, 11 (10)
  • [42] Pan-cancer atlas of somatic core and linker histone mutations
    Bonner, Erin R.
    Dawood, Adam
    Gordish-Dressman, Heather
    Eze, Augustine
    Bhattacharya, Surajit
    Yadavilli, Sridevi
    Mueller, Sabine
    Waszak, Sebastian M.
    Nazarian, Javad
    [J]. NPJ GENOMIC MEDICINE, 2023, 8 (01)
  • [43] Systematic pan-cancer analyses of Hippo pathway deregulation in cancer.
    Chang, Matthew T.
    Hagenbeek, Thijs J.
    Lacap, Jennifer
    Modrusan, Zora
    Klijn, Christiaan
    Dey, Anwesha
    [J]. MOLECULAR CANCER RESEARCH, 2020, 18 (08) : 23 - 23
  • [44] Machine Learning-Based Comparative Analysis of Pan-Cancer and Pan-Normal Tissues Identifies Pan-Cancer Tissue-Enriched circRNAs Related to Cancer Mutations as Potential Exosomal Biomarkers
    Wang, Xuezhu
    Dong, Yucheng
    Wu, Zilong
    Wang, Guanqun
    Shi, Yue
    Zheng, Yongchang
    [J]. FRONTIERS IN ONCOLOGY, 2021, 11
  • [45] Pan-cancer adaptive immune resistance as defined by the Tumor Inflammation Signature (TIS): results from The Cancer Genome Atlas (TCGA)
    Danaher, Patrick
    Warren, Sarah
    Lu, Rongze
    Samayoa, Josue
    Sullivan, Amy
    Pekker, Irena
    Wallden, Brett
    Marincola, Francesco M.
    Cesano, Alessandra
    [J]. JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2018, 6
  • [46] RAS-Bio a unique pan-cancer biobank for RAS-driven tumors
    Carter, Mathew
    Brown, Katherine D.
    Adderley, Helen
    Morrissey, George
    Woodhouse, Laura
    Weaver, Jamie
    Simpson, Kathryn
    Roebuck, Jordan
    Rogan, Jane
    Mercer, Joseph
    Chaturvedi, Anshuman
    Wedge, David
    Jorgensen, Claus
    Malliri, Angeliki
    Dive, Caroline
    Lindsay, Colin R.
    [J]. CANCER RESEARCH, 2024, 84 (06)
  • [47] Homeobox oncogene activation by pan-cancer DNA hypermethylation
    Su, Jianzhong
    Huang, Yung-Hsin
    Cui, Xiaodong
    Wang, Xinyu
    Zhang, Xiaotian
    Lei, Yong
    Xu, Jianfeng
    Lin, Xueqiu
    Chen, Kaifu
    Lv, Jie
    Goodell, Margaret A.
    Li, Wei
    [J]. GENOME BIOLOGY, 2018, 19
  • [48] Homeobox oncogene activation by pan-cancer DNA hypermethylation
    Jianzhong Su
    Yung-Hsin Huang
    Xiaodong Cui
    Xinyu Wang
    Xiaotian Zhang
    Yong Lei
    Jianfeng Xu
    Xueqiu Lin
    Kaifu Chen
    Jie Lv
    Margaret A. Goodell
    Wei Li
    [J]. Genome Biology, 19
  • [49] A pan-cancer RAS mutant library elucidates the transformation potential of RAS variants.
    Moore, Amanda R.
    Fortin, Jean-Philippe
    Costa, Michael
    Callow, Marinella
    Haley, Benjamin
    Manning, Gerard
    Sokol, Ethan S.
    Malek, Shiva
    [J]. MOLECULAR CANCER RESEARCH, 2020, 18 (05) : 53 - 53
  • [50] Robust prediction of pan-cancer immune checkpoint blockade response using machine learning
    Chang, Tiangen
    Dhruba, Saugato R.
    Cao, Yingying
    Morris, Luc G.
    Ruppin, Eytan
    [J]. CANCER RESEARCH, 2023, 83 (07)