Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas

被引:98
|
作者
Way, Gregory P. [1 ]
Sanchez-Vega, Francisco [2 ,3 ]
La, Konnor [3 ]
Armenia, Joshua [3 ]
Chatila, Walid K. [3 ]
Luna, Augustin [4 ,5 ]
Sander, Chris [4 ,5 ]
Cherniack, Andrew D. [6 ,7 ]
Mina, Marco [8 ]
Ciriello, Giovanni [8 ]
Schultz, Nikolaus [9 ]
Sanchez, Yolanda [10 ]
Greene, Casey S. [2 ]
机构
[1] Univ Penn, Perelman Sch Med, Genom & Computat Biol Grad Grp, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Syst Pharmacol & Translat Therapeut, Philadelphia, PA 19104 USA
[3] Mem Sloan Kettering Canc Ctr, Marie Josee & Henry R Kravis Ctr Mol Oncol, New York, NY 10065 USA
[4] Dana Farber Canc Inst, cBio Ctr, Dept Biostat & Computat Biol, Boston, MA 02215 USA
[5] Harvard Med Sch, Dept Cell Biol, Boston, MA 02115 USA
[6] Eli & Edythe L Broad Inst Massachusetts Inst Tech, Cambridge, MA 02142 USA
[7] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA 02215 USA
[8] Univ Lausanne, Dept Computat Biol, Lausanne, Switzerland
[9] Mem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, New York, NY 10065 USA
[10] Norris Cotton Canc Ctr, Geisel Sch Med Dartmouth, Dept Mol Syst Biol, Hanover, NH 03755 USA
来源
CELL REPORTS | 2018年 / 23卷 / 01期
关键词
PRECISION ONCOLOGY; SELUMETINIB; MUTATIONS; SIGNATURES; PROTEIN; GENE; BRAF; PATHOGENESIS; ONCOGENES; SELECTION;
D O I
10.1016/j.celrep.2018.03.046
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Precision oncology uses genomic evidence to match patients with treatment but often fails to identify all patients who may respond. The transcriptome of these "hidden responders'' may reveal responsive molecular states. We describe and evaluate a machine-learning approach to classify aberrant pathway activity in tumors, which may aid in hidden responder identification. The algorithm integrates RNA-seq, copy number, and mutations from 33 different cancer types across The Cancer Genome Atlas (TCGA) PanCanAtlas project to predict aberrant molecular states in tumors. Applied to the Ras pathway, the method detects Ras activation across cancer types and identifies phenocopying variants. The model, trained on human tumors, can predict response to MEK inhibitors in wild-type Ras cell lines. We also present data that suggest that multiple hits in the Ras pathway confer increased Ras activity. The transcriptome is underused in precision oncology and, combined with machine learning, can aid in the identification of hidden responders.
引用
收藏
页码:172 / +
页数:12
相关论文
共 50 条
  • [1] Identification of pan-cancer Ras pathway activation with deep learning
    Li, Xiangtao
    Li, Shaochuan
    Wang, Yunhe
    Zhang, Shixiong
    Wong, Ka-Chun
    [J]. BRIEFINGS IN BIOINFORMATICS, 2021, 22 (04)
  • [2] A pan-cancer proteomic perspective on The Cancer Genome Atlas
    Rehan Akbani
    Patrick Kwok Shing Ng
    Henrica M. J. Werner
    Maria Shahmoradgoli
    Fan Zhang
    Zhenlin Ju
    Wenbin Liu
    Ji-Yeon Yang
    Kosuke Yoshihara
    Jun Li
    Shiyun Ling
    Elena G. Seviour
    Prahlad T. Ram
    John D. Minna
    Lixia Diao
    Pan Tong
    John V. Heymach
    Steven M. Hill
    Frank Dondelinger
    Nicolas Städler
    Lauren A. Byers
    Funda Meric-Bernstam
    John N. Weinstein
    Bradley M. Broom
    Roeland G. W. Verhaak
    Han Liang
    Sach Mukherjee
    Yiling Lu
    Gordon B. Mills
    [J]. Nature Communications, 5
  • [3] The Cancer Genome Atlas Pan-Cancer analysis project
    Weinstein, John N.
    Collisson, Eric A.
    Mills, Gordon B.
    Shaw, Kenna R. Mills
    Ozenberger, Brad A.
    Ellrott, Kyle
    Shmulevich, Ilya
    Sander, Chris
    Stuart, Joshua M.
    [J]. NATURE GENETICS, 2013, 45 (10) : 1113 - 1120
  • [4] The Cancer Genome Atlas Pan-Cancer analysis project
    John N Weinstein
    Eric A Collisson
    Gordon B Mills
    Kenna R Mills Shaw
    Brad A Ozenberger
    Kyle Ellrott
    Ilya Shmulevich
    Chris Sander
    Joshua M Stuart
    [J]. Nature Genetics, 2013, 45 : 1113 - 1120
  • [5] A pan-cancer proteomic perspective on The Cancer Genome Atlas
    Akbani, Rehan
    Ng, Patrick Kwok Shing
    Werner, Henrica M. J.
    Shahmoradgoli, Maria
    Zhang, Fan
    Ju, Zhenlin
    Liu, Wenbin
    Yang, Ji-Yeon
    Yoshihara, Kosuke
    Li, Jun
    Ling, Shiyun
    Seviour, Elena G.
    Ram, Prahlad T.
    Minna, John D.
    Diao, Lixia
    Tong, Pan
    Heymach, John V.
    Hill, Steven M.
    Dondelinger, Frank
    Stadler, Nicolas
    Byers, Lauren A.
    Meric-Bernstam, Funda
    Weinstein, John N.
    Broom, Bradley M.
    Verhaak, Roeland G. W.
    Liang, Han
    Mukherjee, Sach
    Lu, Yiling
    Mills, Gordon B.
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [6] A pan-cancer atlas
    Nawy, Tal
    [J]. NATURE METHODS, 2018, 15 (06) : 407 - 407
  • [7] A pan-cancer atlas
    Tal Nawy
    [J]. Nature Methods, 2018, 15 : 407 - 407
  • [8] Correction: Corrigendum: A pan-cancer proteomic perspective on The Cancer Genome Atlas
    Rehan Akbani
    Patrick Kwok Shing Ng
    Henrica M.J. Werner
    Maria Shahmoradgoli
    Fan Zhang
    Zhenlin Ju
    Wenbin Liu
    Ji-Yeon Yang
    Kosuke Yoshihara
    Jun Li
    Shiyun Ling
    Elena G. Seviour
    Prahlad T. Ram
    John D. Minna
    Lixia Diao
    Pan Tong
    John V. Heymach
    Steven M. Hill
    Frank Dondelinger
    Nicolas Städler
    Lauren A. Byers
    Funda Meric-Bernstam
    John N. Weinstein
    Bradley M. Broom
    Roeland G.W. Verhaak
    Han Liang
    Sach Mukherjee
    Yiling Lu
    Gordon B. Mills
    [J]. Nature Communications, 6
  • [9] A pan-cancer proteomic analysis of The Cancer Genome Atlas (TCGA) project
    Akbani, Rehan
    Ng, Kwok-Shing
    Werner, Henrica M.
    Zhang, Fan
    Ju, Zhenlin
    Liu, Wenbin
    Yang, Ji-Yeon
    Lu, Yiling
    Weinstein, John N.
    Mills, Gordon B.
    [J]. CANCER RESEARCH, 2014, 74 (19)
  • [10] Deciphering and identifying pan-cancer RAS pathway activation based on graph autoencoder and ClassifierChain
    Gong, Jianting
    Zhao, Yingwei
    Heng, Xiantao
    Chen, Yongbing
    Sun, Pingping
    He, Fei
    Ma, Zhiqiang
    Ren, Zilin
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (08): : 4951 - 4967