Operational characteristics of a miniature loop heat pipe with flat evaporator

被引:143
|
作者
Singh, Randeep [1 ]
Akbarzadeh, Aliakbar [1 ]
Mochizuki, Masataka [2 ]
机构
[1] RMIT Univ, Sch Aerosp Mech & Mfg Engn, Energy CARE Grp, Bundoora, Vic 3083, Australia
[2] Fujikura Ltd, R&D Dept, Thermal Technol Div, Koto Ku, Tokyo 1358512, Japan
关键词
Loop heat pipe; LHP; Heat transfer; Thermal performance; Miniature loop heat pipe; mLHP; Flat evaporators; Thermal control;
D O I
10.1016/j.ijthermalsci.2007.12.013
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper specifically addresses the thermal characteristics of the miniature Loop Heat Pipe (mLHP) with the flat disk shaped evaporator, 10 mm thick and 30 mm in diameter, for the thermal control of the compact electronic equipments. The loop was made of copper with nickel wick and water as the working fluid. Detailed study was conducted on the start-up reliability of the mLHP at high as well as low heat loads. It was found that the device was able to start-up at input power as low as 5 W. however the start-up time was very high at such heat loads. During the testing of mLHP under step and random power cycles, the thermal response presented by the loop to achieve steady state was very short. At low heat loads, thermal and hydraulic oscillations were observed throughout the loop. The amplitudes of these fluctuations were very high at condenser inlet and liquid line exit. It is expected that the extent and nature of the oscillations occurrence is dependent on the thermal and hydrodynamic conditions inside the compensation chamber. Overall. the effect of these oscillations on the thermal performance of the mLHP was not very significant. In the horizontal orientation, the device was able to transfer maximum heat load of 70 W with evaporator temperature below 100 +/- 5 degrees C limit. The thermal resistance (RmLHP) of the mLHP lies between 0.17 to 5.66 degrees C/W. (C) 2008 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1504 / 1515
页数:12
相关论文
共 50 条
  • [31] Operating characteristics of an anti-gravity loop heat pipe with a flat evaporator that has the capability of a loop thermosyphon
    Watanabe, Noriyuki
    Nguyen Phan
    Saito, Yuki
    Hayashi, Shota
    Katayama, Naoki
    Nagano, Hosei
    ENERGY CONVERSION AND MANAGEMENT, 2020, 205
  • [32] Experimental study on flat type loop heat pipe with parallel evaporator
    Liu, Z.-C. (zcliu@hust.edu.cn), 1939, Science Press (34):
  • [33] Ceramic flat plate evaporator for loop heat pipe cooling of electronics
    Zimbeck, Walter
    Chaney, Jared
    Espinoza, Patricio
    Kroliczek, Edward
    Bugby, David C.
    Yuri, James
    Advances in Electronic Packaging 2005, Pts A-C, 2005, : 177 - 182
  • [34] Experimental tests of a stainless steel loop heat pipe with flat evaporator
    Celata, Gian Piero
    Cumo, Maurizio
    Furrer, Massimo
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2010, 34 (07) : 866 - 878
  • [35] Experimental study of an ammonia loop heat pipe with a flat plate evaporator
    Song, He
    Liu Zhi-chun
    Jing, Zhao
    Chi, Jiang
    Yang Jin-guo
    Wei, Liu
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 102 : 1050 - 1055
  • [36] Heat transfer characteristics of flat evaporator loop heat pipe under high heat flux condition with different orientations
    Odagiri, Kimihide
    Nagano, Hosei
    APPLIED THERMAL ENGINEERING, 2019, 153 : 828 - 836
  • [37] Experimental investigation of a miniature loop heat pipe with eccentric evaporator for cooling electronics
    Tian, Wei
    He, Song
    Liu, Zhichun
    Liu, Wei
    APPLIED THERMAL ENGINEERING, 2019, 159
  • [38] Thermal Potential of Flat Evaporator Miniature Loop Heat Pipes for Notebook Cooling
    Singh, Randeep
    Akbarzadeh, Aliakbar
    Mochizuki, Masataka
    IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, 2010, 33 (01): : 32 - 45
  • [39] Effect of groove size on heat transfer performance of loop heat pipe with flat evaporator
    Lü, Xiao
    Wei, Jin-Jia
    Long, Yan
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2015, 36 (03): : 611 - 614
  • [40] Operating characteristics of a miniature cryogenic loop heat pipe
    Bai, Lizhan
    Lin, Guiping
    Zhang, Hongxing
    Miao, Jianyin
    Wen, Dongsheng
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2012, 55 (25-26) : 8093 - 8099