PyPathway: Python']Python Package for Biological Network Analysis and Visualization

被引:6
|
作者
Xu, Yang [1 ]
Luo, Xiao-Chun [1 ]
机构
[1] South China Univ Technol, Sch Biosci & Bioengn, Guangzhou Higher Educ Mega Ctr, Guangdong Prov Key Lab Fermentat & Enzyme Engn, Guangzhou 510006, Guangdong, Peoples R China
关键词
enrichment analysis; network analysis; pathway; visualization; PATHWAYS;
D O I
10.1089/cmb.2017.0199
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Life science studies represent one of the biggest generators of large data sets, mainly because of rapid sequencing technological advances. Biological networks including interactive networks and human curated pathways are essential to understand these high-throughput data sets. Biological network analysis offers a method to explore systematically not only the molecular complexity of a particular disease but also the molecular relationships among apparently distinct phenotypes. Currently, several packages for Python community have been developed, such as BioPython and Goatools. However, tools to perform comprehensive network analysis and visualization are still needed. Here, we have developed PyPathway, an extensible free and open source Python package for functional enrichment analysis, network modeling, and network visualization. The network process module supports various interaction network and pathway databases such as Reactome, WikiPathway, STRING, and BioGRID. The network analysis module implements overrepresentation analysis, gene set enrichment analysis, network-based enrichment, and de novo network modeling. Finally, the visualization and data publishing modules enable users to share their analysis by using an easy web application. For package availability, see the first Reference.
引用
收藏
页码:499 / 504
页数:6
相关论文
共 50 条
  • [21] Pyleoclim: Paleoclimate Timeseries Analysis and Visualization With Python']Python
    Khider, Deborah
    Emile-Geay, Julien
    Zhu, Feng
    James, Alexander
    Landers, Jordan
    Ratnakar, Varun
    Gil, Yolanda
    [J]. PALEOCEANOGRAPHY AND PALEOCLIMATOLOGY, 2022, 37 (10)
  • [22] spectrum_utils: A Python']Python Package for Mass Spectrometry Data Processing and Visualization
    Bittremieux, Wout
    [J]. ANALYTICAL CHEMISTRY, 2020, 92 (01) : 659 - 661
  • [23] Quantiprot - a Python']Python package for quantitative analysis of protein sequences
    Konopka, Bogumil M.
    Marciniak, Marta
    Dyrka, Witold
    [J]. BMC BIOINFORMATICS, 2017, 18
  • [24] Analysis of counting data: Development of the SATLAS Python']Python package
    Gins, W.
    de Groote, R. P.
    Bissell, M. L.
    Buitrago, C. Granados
    Ferrer, R.
    Lynch, K. M.
    Neyens, G.
    Sels, S.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2018, 222 : 286 - 294
  • [25] BioServices: a common Python']Python package to access biological Web Services programmatically
    Cokelaer, Thomas
    Pultz, Dennis
    Harder, Lea M.
    Serra-Musach, Jordi
    Saez-Rodriguez, Julio
    [J]. BIOINFORMATICS, 2013, 29 (24) : 3241 - 3242
  • [26] Pytim: A Python']Python Package for the Interfacial Analysis of Molecular Simulations
    Sega, Marcello
    Hantal, Gyoergy
    Fabian, Balazs
    Jedlovszky, Pal
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2018, 39 (25) : 2118 - 2125
  • [27] pyIDEAS: an Open Source Python']Python Package for Model Analysis
    Van Daele, Timothy
    Van Hoey, Stijn
    Nopens, Ingmar
    [J]. 12TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING (PSE) AND 25TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING (ESCAPE), PT A, 2015, 37 : 569 - 574
  • [28] AOtools: a Python']Python package for adaptive optics modelling and analysis
    Townson, M. J.
    Farley, O. J. D.
    de Xivry, G. Orban
    Osborn, J.
    Reeves, A. P.
    [J]. OPTICS EXPRESS, 2019, 27 (22) : 31316 - 31329
  • [29] PyMix - The Python']Python mixture package - a tool for clustering of heterogeneous biological data
    Georgi, Benjamin
    Costa, Ivan Gesteira
    Schliep, Alexander
    [J]. BMC BIOINFORMATICS, 2010, 11
  • [30] MPDAF - A Python']Python Package for the Analysis of VLT/MUSE Data
    Piqueras, L.
    Conseil, S.
    Shepherd, M.
    Bacon, R.
    Leclercq, F.
    Richard, J.
    [J]. ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XXVI, 2019, 521 : 545 - 548