CONSERVATION SCHEMES FOR CONVECTION-DIFFUSION EQUATIONS WITH ROBIN BOUNDARY CONDITIONS

被引:4
|
作者
Flotron, Stephane [1 ]
Rappaz, Jacques [1 ]
机构
[1] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland
关键词
Finite Elements; numerical conservation schemes; Robin boundary condition; convection-diffusion equations;
D O I
10.1051/m2an/2013087
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we present a numerical scheme based on a finite element method in order to solve a time-dependent convection-diffusion equation problem and satisfy some conservation properties. In particular, our scheme is able to conserve the total energy for a heat equation or the total mass of a solute in a fluid for a concentration equation, even if the approximation of the velocity field is not completely divergence-free. We establish a priori errror estimates for this scheme and we give some numerical examples which show the efficiency of the method.
引用
收藏
页码:1765 / 1781
页数:17
相关论文
共 50 条
  • [41] Noncoercive convection-diffusion elliptic problems with Neumann boundary conditions
    Droniou, Jerome
    Vazquez, Juan-Luis
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (04) : 413 - 434
  • [42] CFL condition and boundary conditions for DGM approximation of convection-diffusion
    Kamga, Jean-Baptiste Apoung
    Despres, Bruno
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (06) : 2245 - 2269
  • [43] Large-time behaviour of a family of finite volume schemes for boundary-driven convection-diffusion equations
    Chainais-Hillairet, Claire
    Herda, Maxime
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2020, 40 (04) : 2473 - 2504
  • [44] Large-time behaviour of a family of finite volume schemes for boundary-driven convection-diffusion equations
    Chainais-Hillairet C.
    Herda M.
    IMA Journal of Numerical Analysis, 2020, 40 (04): : 2473 - 2504
  • [45] New Grid Approach for Solution of Boundary Problems for Convection-Diffusion Equations
    Polyakov, Sergey V.
    Karamzin, Yuri N.
    Kudryashova, Tatiana A.
    Podryga, Viktoriia O.
    NUMERICAL ANALYSIS AND ITS APPLICATIONS (NAA 2016), 2017, 10187 : 550 - 558
  • [46] Modified streamline diffusion schemes for convection-diffusion problems
    Shih, YT
    Elman, HC
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 174 (1-2) : 137 - 151
  • [47] A half boundary method for two dimensional unsteady convection-diffusion equations
    Zhao, Yuanyuan
    Huang, Mei
    Ouyang, Xiaoping
    Luo, Jun
    Shen, Yongqing
    Bao, Fang
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2022, 135 : 322 - 336
  • [48] A residual based a posteriori error estimators for AFC schemes for convection-diffusion equations
    Jha, Abhinav
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 97 : 86 - 99
  • [49] Fundamental systems of numerical schemes for linear convection-diffusion equations and their relationship to accuracy
    Ainsworth, M
    Dörfler, W
    COMPUTING, 2001, 66 (02) : 199 - 229
  • [50] Exponential difference schemes with double integral transformation for solving convection-diffusion equations
    Polyakov S.V.
    Mathematical Models and Computer Simulations, 2013, 5 (4) : 338 - 340