Complex Langevin dynamics for chiral random matrix theory

被引:56
|
作者
Mollgaard, A. [1 ]
Splittorff, K. [1 ]
机构
[1] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen O, Denmark
来源
PHYSICAL REVIEW D | 2013年 / 88卷 / 11期
关键词
QCD DIRAC OPERATOR; SYMMETRY; DENSITY;
D O I
10.1103/PhysRevD.88.116007
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We apply complex Langevin dynamics to chiral random matrix theory at nonzero chemical potential. At large quark mass, the simulations agree with the analytical results while incorrect convergence is found for small quark masses. The region of quark masses for which the complex Langevin dynamics converges incorrectly is identified as the region where the fermion determinant frequently traces out a path surrounding the origin of the complex plane during the Langevin flow. This links the incorrect convergence to an ambiguity in the Langevin force due to the presence of the logarithm of the fermion determinant in the action.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Random matrix theory and parametric dynamics of spectra
    Kus, M
    ACTA PHYSICA POLONICA B, 2003, 34 (10): : 4975 - 4985
  • [22] Random Matrix Theory in molecular dynamics analysis
    Palese, Luigi Leonardo
    BIOPHYSICAL CHEMISTRY, 2015, 196 : 1 - 9
  • [23] Complex Langevin Theory of Polymers
    Man, Xing-kun
    Zhang, Jie
    ACTA POLYMERICA SINICA, 2016, (08): : 1042 - 1047
  • [24] Gauge cooling for the singular-drift problem in the complex Langevin method — a test in Random Matrix Theory for finite density QCD
    Keitaro Nagata
    Jun Nishimura
    Shinji Shimasaki
    Journal of High Energy Physics, 2016
  • [25] Gauge cooling for the singular-drift problem in the complex Langevin method - a test in Random Matrix Theory for finite density QCD
    Nagata, Keitaro
    Nishimura, Jun
    Shimasaki, Shinji
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (07):
  • [26] Random-Matrix Theory for Complex Atomic Spectra
    Pain, Jean-Christophe
    CHINESE JOURNAL OF PHYSICS, 2012, 50 (04) : 523 - 532
  • [27] Wavepacket dynamics, quantum reversibility, and random matrix theory
    Hiller, M
    Cohen, D
    Geisel, T
    Kottos, T
    ANNALS OF PHYSICS, 2006, 321 (05) : 1025 - 1062
  • [28] SPECTRUM OF THE QCD DIRAC OPERATOR AND CHIRAL RANDOM-MATRIX THEORY
    VERBAARSCHOT, J
    PHYSICAL REVIEW LETTERS, 1994, 72 (16) : 2531 - 2533
  • [29] Chiral random matrix theory for colorful quark-antiquark condensates
    Kanazawa, Takuya
    PHYSICAL REVIEW D, 2020, 102 (01):
  • [30] Topology and chiral random matrix theory at nonzero imaginary chemical potential
    Lehner, C.
    Ohtani, M.
    Verbaarschot, J. J. M.
    Wettig, T.
    PHYSICAL REVIEW D, 2009, 79 (07):