Using the Kelvin-Voigt model for nanoindentation creep in Sn-C/PVDF nanocomposites

被引:10
|
作者
Hackney, S. A. [1 ,2 ]
Aifantis, K. E. [1 ]
Tangtrakarn, A. [1 ,3 ]
Shrivastava, S. [1 ,4 ]
机构
[1] Aristotle Univ Thessaloniki, Lab Mech & Mat, Thessaloniki 55124, Greece
[2] Michigan Technol Univ, Houghton, MI 49931 USA
[3] Khon Kaen Univ, Dept Phys, Khon Kaen 40002, Thailand
[4] Univ Witwatersrand, Dept Phys, Johannesburg, South Africa
基金
欧洲研究理事会;
关键词
Creep; Nanostructured; Sn/C anodes; Kelvin-Voight; SENSING INDENTATION; BEHAVIOR; ANODES; FILMS;
D O I
10.1179/1743284712Y.0000000063
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the present work, nanoindentation was used to examine the creep behaviour of nanostructured Sn-C/polyvinylidene fluoride composites, which are promising anodes for next generation Li ion batteries. Modifying the Kelvin-Voigt model using the stresses and strains that develop upon constant load nanoindentation allowed for an analysis that fits the experimental data. The resulting fits provided estimates for the elastic modulus and viscosity. The modulus and viscosity are found to vary significantly with position on the sample but are within range of accepted values. A comparison of the Kelvin-Voigt derived modulus with the Maxwell solid derived creep corrected Oliver-Pharr method was of the same order, but the trends did not match between the two models. The dissipated creep strain energy (DCSE), which has been used as a measure of damage in viscous-elastic composites, was examined for the Kelvin-Voigt model derived modulus and viscosity. The DCSE may be a relevant parameter for Li ion anode lifetime prediction.
引用
收藏
页码:1161 / 1166
页数:6
相关论文
共 50 条
  • [31] Mixed convolved action for the fractional derivative Kelvin-Voigt model
    Kim, Jinkyu
    ACTA MECHANICA, 2021, 232 (02) : 661 - 684
  • [32] Convergence of Attractors for an Approximation to Attractors of a Modified Kelvin-Voigt Model
    Turbin, M., V
    Ustiuzhaninova, A. S.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2022, 62 (02) : 325 - 335
  • [33] Microrheological model for Kelvin-Voigt materials with micro-heterogeneities
    Azevedo, T. N.
    Oliveira, K. M.
    Maia, H. P.
    Teixeira, A. V. N. C.
    Rizzi, L. G.
    SOFT MATTER, 2025, 21 (08) : 1498 - 1507
  • [34] Unconditional stability of a fully discrete scheme for the kelvin-voigt model
    Lu, Xiaoli
    Huang, Pengzhan
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2019, 81 (01): : 137 - 142
  • [35] Eigen theory of viscoelastic dynamics based on the Kelvin-Voigt model
    Guo Shao-hua
    Applied Mathematics and Mechanics, 2004, 25 (7) : 792 - 798
  • [36] PRESENTATION OF THE CREEP CURVES OF SOLID BIOLOGICAL-MATERIALS BY A SIMPLIFIED MATHEMATICAL VERSION OF THE GENERALIZED KELVIN-VOIGT MODEL
    PURKAYASTHA, S
    PELEG, M
    NORMAND, MD
    RHEOLOGICA ACTA, 1984, 23 (05) : 556 - 563
  • [37] Damping properties of the viscoelastic material described by fractional Kelvin-Voigt model
    Zhang, Wei
    Shimizu, Nobuyuki
    JSME International Journal, Series C: Dynamics, Control, Robotics, Design and Manufacturing, 1999, 42 (01): : 1 - 9
  • [38] BACKWARD EULER SCHEMES FOR THE KELVIN-VOIGT VISCOELASTIC FLUID FLOW MODEL
    Pany, Ambit K.
    Paikray, Susanta K.
    Padhy, Sudarsan
    Pani, Amiya K.
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2017, 14 (01) : 126 - 151
  • [39] Existence and uniqueness for a viscoelastic Kelvin-Voigt model with nonconvex stored energy
    Koumatos, Konstantinos
    Lattanzio, Corrado
    Spirito, Stefano
    Tzavaras, Athanasios E.
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2023, 20 (02) : 433 - 474
  • [40] Modification of Kelvin-Voigt Model in Fractional Order for Thermoviscoelastic Isotropic Material
    Amin, M. M.
    El-Bary, A. A.
    Atef, Haitham M.
    MATERIALS FOCUS, 2018, 7 (06) : 824 - 832