Using the Kelvin-Voigt model for nanoindentation creep in Sn-C/PVDF nanocomposites

被引:10
|
作者
Hackney, S. A. [1 ,2 ]
Aifantis, K. E. [1 ]
Tangtrakarn, A. [1 ,3 ]
Shrivastava, S. [1 ,4 ]
机构
[1] Aristotle Univ Thessaloniki, Lab Mech & Mat, Thessaloniki 55124, Greece
[2] Michigan Technol Univ, Houghton, MI 49931 USA
[3] Khon Kaen Univ, Dept Phys, Khon Kaen 40002, Thailand
[4] Univ Witwatersrand, Dept Phys, Johannesburg, South Africa
基金
欧洲研究理事会;
关键词
Creep; Nanostructured; Sn/C anodes; Kelvin-Voight; SENSING INDENTATION; BEHAVIOR; ANODES; FILMS;
D O I
10.1179/1743284712Y.0000000063
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the present work, nanoindentation was used to examine the creep behaviour of nanostructured Sn-C/polyvinylidene fluoride composites, which are promising anodes for next generation Li ion batteries. Modifying the Kelvin-Voigt model using the stresses and strains that develop upon constant load nanoindentation allowed for an analysis that fits the experimental data. The resulting fits provided estimates for the elastic modulus and viscosity. The modulus and viscosity are found to vary significantly with position on the sample but are within range of accepted values. A comparison of the Kelvin-Voigt derived modulus with the Maxwell solid derived creep corrected Oliver-Pharr method was of the same order, but the trends did not match between the two models. The dissipated creep strain energy (DCSE), which has been used as a measure of damage in viscous-elastic composites, was examined for the Kelvin-Voigt model derived modulus and viscosity. The DCSE may be a relevant parameter for Li ion anode lifetime prediction.
引用
收藏
页码:1161 / 1166
页数:6
相关论文
共 50 条
  • [1] A Study on Creep Behavior of Composite Solid Propellants Using the Kelvin-Voigt Model
    Bihari, Bipin K.
    Rao, Nellutla P. N.
    Gupta, Manoj
    Murthy, K. P. S.
    CENTRAL EUROPEAN JOURNAL OF ENERGETIC MATERIALS, 2017, 14 (03): : 742 - 756
  • [2] Generalized Kelvin-Voigt Creep Model in Fractal Space-Time
    de Luna, Eduardo Reyes
    Kryvko, Andriy
    Pascual-Francisco, Juan B.
    Hernandez, Ignacio
    Samayoa, Didier
    MATHEMATICS, 2024, 12 (19)
  • [3] A creep model for frozen soil based on the fractional Kelvin-Voigt's model
    Zhang, Ze
    Huang, Canjie
    Jin, Huijun
    Feng, Wenjie
    Jin, Doudou
    Zhang, Guike
    ACTA GEOTECHNICA, 2022, 17 (10) : 4377 - 4393
  • [4] On the Kelvin-Voigt model in anisotropic viscoelasticity
    Coco, Marco
    Saccomandi, Giuseppe
    MATHEMATICS AND MECHANICS OF SOLIDS, 2023, 28 (12) : 2581 - 2595
  • [5] ON KELVIN-VOIGT MODEL AND ITS GENERALIZATIONS
    Bulicek, Miroslav
    Malek, Josef
    Rajagopal, K. R.
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2012, 1 (01): : 17 - 42
  • [6] A note on a reappraisal and generalization of the Kelvin-Voigt model
    Rajagopal, K. R.
    MECHANICS RESEARCH COMMUNICATIONS, 2009, 36 (02) : 232 - 235
  • [7] On the Existence of Weak Solutions of the Kelvin-Voigt Model
    Zvyagin, A. V.
    MATHEMATICAL NOTES, 2024, 116 (1-2) : 130 - 135
  • [8] Uniform Attractors for the Modified Kelvin-Voigt Model
    Ustiuzhaninova, A. S.
    DIFFERENTIAL EQUATIONS, 2021, 57 (09) : 1165 - 1176
  • [9] HYDRODYNAMIC KELVIN-VOIGT MODEL TRANSPORTATION SYSTEM
    Pihnastyi, Oleh M.
    Khodusov, Valery D.
    EAST EUROPEAN JOURNAL OF PHYSICS, 2020, (04): : 95 - 109
  • [10] A linear viscoelastic creep-contact model of a flat fractal surface: Kelvin-Voigt medium
    Abuzeid, OM
    INDUSTRIAL LUBRICATION AND TRIBOLOGY, 2004, 56 (06) : 334 - 340