Learning About Machine Learning: The Promise and Pitfalls of Big Data and the Electronic Health Record

被引:27
|
作者
Deo, Rahul C. [1 ,2 ,3 ,4 ,5 ]
Nallamothu, Brahmajee K. [6 ,7 ]
机构
[1] Univ Calif San Francisco, Dept Med, Div Cardiol, San Francisco, CA 94158 USA
[2] Univ Calif San Francisco, Cardiovasc Res Inst, San Francisco, CA 94158 USA
[3] Univ Calif San Francisco, Inst Human Genet, San Francisco, CA 94158 USA
[4] Univ Calif San Francisco, Inst Computat Hlth Sci, San Francisco, CA 94158 USA
[5] Calif Inst Quantitat Biosci, San Francisco, CA USA
[6] VA Ann Arbor Healthcare Syst, VA Hlth Serv Res & Dev Ctr Clin Management Res, Ann Arbor, MI USA
[7] Univ Michigan, Sch Med, Dept Internal Med, M CHAMP, Ann Arbor, MI USA
来源
关键词
Editorials; heart failure; linear models; machine learning; medicine; risk factors; INCIDENT HEART-FAILURE; POPULATION; PREDICTION;
D O I
10.1161/CIRCOUTCOMES.116.003308
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
引用
收藏
页码:618 / 620
页数:3
相关论文
共 50 条
  • [1] PROMISE AND PITFALLS OF THE ELECTRONIC HEALTH RECORD
    Savel, Richard H.
    Munro, Cindy L.
    [J]. AMERICAN JOURNAL OF CRITICAL CARE, 2013, 22 (06) : 460 - 462
  • [2] Big data and machine learning in health
    Carvalho, D.
    Cruz, R.
    [J]. EUROPEAN JOURNAL OF PUBLIC HEALTH, 2020, 30 : 10 - 11
  • [3] Machine learning functional impairment classification with electronic health record data
    Pavon, Juliessa M.
    Previll, Laura
    Woo, Myung
    Henao, Ricardo
    Solomon, Mary
    Rogers, Ursula
    Olson, Andrew
    Fischer, Jonathan
    Leo, Christopher
    Fillenbaum, Gerda
    Hoenig, Helen
    Casarett, David
    [J]. JOURNAL OF THE AMERICAN GERIATRICS SOCIETY, 2023, 71 (09) : 2822 - 2833
  • [4] Using Machine Learning to Identify Health Outcomes from Electronic Health Record Data
    Jenna Wong
    Mara Murray Horwitz
    Li Zhou
    Sengwee Toh
    [J]. Current Epidemiology Reports, 2018, 5 : 331 - 342
  • [5] Using Machine Learning to Identify Health Outcomes from Electronic Health Record Data
    Wong, Jenna
    Murray Horwitz, Mara
    Zhou, Li
    Toh, Sengwee
    [J]. CURRENT EPIDEMIOLOGY REPORTS, 2018, 5 (04) : 331 - 342
  • [6] Classifying Pseudogout Using Machine Learning Approaches With Electronic Health Record Data
    Tedeschi, Sara K.
    Cai, Tianrun
    He, Zeling
    Ahuja, Yuri
    Hong, Chuan
    Yates, Katherine A.
    Dahal, Kumar
    Xu, Chang
    Lyu, Houchen
    Yoshida, Kazuki
    Solomon, Daniel H.
    Cai, Tianxi
    Liao, Katherine P.
    [J]. ARTHRITIS CARE & RESEARCH, 2021, 73 (03) : 442 - 448
  • [7] Classifying Pseudogout Using Machine Learning Approaches with Electronic Health Record Data
    Tedeschi, Sara K.
    Cai, Tianrun
    He, Zeling
    Ahuja, Yuri
    Hong, Chuan
    Yates, Katherine
    Dahal, Kumar
    Xu, Chang
    Lyu, Houchen
    Yoshida, Kazuki
    Solomon, Daniel
    Cai, Tianxi
    Liao, Katherine
    [J]. ARTHRITIS & RHEUMATOLOGY, 2019, 71
  • [8] Potential Biases in Machine Learning Algorithms Using Electronic Health Record Data
    Gianfrancesco, Milena A.
    Tamang, Suzanne
    Yazdany, Jinoos
    Schmajuk, Gabriela
    [J]. JAMA INTERNAL MEDICINE, 2018, 178 (11) : 1544 - 1547
  • [9] Applications of Machine Learning on Electronic Health Record Data to Combat Antibiotic Resistance
    Blechman, Samuel E.
    Wright, Erik S.
    [J]. JOURNAL OF INFECTIOUS DISEASES, 2024,
  • [10] Identification of postoperative complications using electronic health record data and machine learning
    Bronsert, Michael
    Singh, Abhinav B.
    Henderson, William G.
    Hammermeister, Karl
    Meguid, Robert A.
    Colborn, Kathryn L.
    [J]. AMERICAN JOURNAL OF SURGERY, 2020, 220 (01): : 114 - 119