Identification of postoperative complications using electronic health record data and machine learning

被引:18
|
作者
Bronsert, Michael [1 ,2 ]
Singh, Abhinav B. [2 ]
Henderson, William G. [1 ,2 ,3 ]
Hammermeister, Karl [1 ,2 ,4 ]
Meguid, Robert A. [1 ,2 ]
Colborn, Kathryn L. [3 ]
机构
[1] Univ Colorado, Adult & Child Consortium Hlth Outcomes Res & Deli, Anschutz Med Campus, Aurora, CO 80045 USA
[2] Univ Colorado, Surg Outcomes & Appl Res Program, Dept Surg, Sch Med, Aurora, CO 80045 USA
[3] Univ Colorado, Colorado Sch Publ Hlth, Dept Biostat & Informat, Anschutz Med Campus, Aurora, CO 80045 USA
[4] Univ Colorado, Sch Med, Dept Cardiol, Anschutz Med Campus, Aurora, CO 80045 USA
来源
AMERICAN JOURNAL OF SURGERY | 2020年 / 220卷 / 01期
基金
美国医疗保健研究与质量局;
关键词
NSQIP; Postoperative complications; Elastic-net; Machine learning; URINARY-TRACT-INFECTION; SURVEILLANCE; CARE; REGULARIZATION; ACCURACY; QUALITY;
D O I
10.1016/j.amjsurg.2019.10.009
中图分类号
R61 [外科手术学];
学科分类号
摘要
Background: Using the American College of Surgeons National Surgical Quality Improvement Program (NSQIP) complication status of patients who underwent an operation at the University of Colorado Hospital, we developed a machine learning algorithm for identifying patients with one or more complications using data from the electronic health record (EHR). Methods: We used an elastic-net model to estimate regression coefficients and carry out variable selection. International classification of disease codes (ICD-9), common procedural terminology (CPT) codes, medications, and CPT-specific complication event rate were included as predictors. Results: Of 6840 patients, 922 (13.5%) had at least one of the 18 complications tracked by NSQIP. The model achieved 88% specificity, 83% sensitivity, 97% negative predictive value, 52% positive predictive value, and an area under the curve of 0.93. Conclusions: Using machine learning on EHR postoperative data linked to NSQIP outcomes data, a model with 163 predictors from the EHR identi fied complications well at our institution. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:114 / 119
页数:6
相关论文
共 50 条
  • [1] Performance of a Machine Learning Algorithm Using Electronic Health Record Data to Predict Postoperative Complications and Report on a Mobile Platform
    Ren, Yuanfang
    Loftus, Tyler J.
    Datta, Shounak
    Ruppert, Matthew M.
    Guan, Ziyuan
    Miao, Shunshun
    Shickel, Benjamin
    Feng, Zheng
    Giordano, Chris
    Upchurch, Gilbert R., Jr.
    Rashidi, Parisa
    Ozrazgat-Baslanti, Tezcan
    Bihorac, Azra
    [J]. JAMA NETWORK OPEN, 2022, 5 (05)
  • [2] Preoperative Prediction of Postoperative Infections Using Machine Learning and Electronic Health Record Data
    Zhuang, Yaxu
    Dyas, Adam
    Meguid, Robert A.
    Henderson, William G.
    Bronsert, Michael
    Madsen, Helen
    Colborn, Kathryn L.
    [J]. ANNALS OF SURGERY, 2024, 279 (04) : 720 - 726
  • [3] Postoperative delirium prediction using machine learning models and preoperative electronic health record data
    Andrew Bishara
    Catherine Chiu
    Elizabeth L. Whitlock
    Vanja C. Douglas
    Sei Lee
    Atul J. Butte
    Jacqueline M. Leung
    Anne L. Donovan
    [J]. BMC Anesthesiology, 22
  • [4] Postoperative delirium prediction using machine learning models and preoperative electronic health record data
    Bishara, Andrew
    Chiu, Catherine
    Whitlock, Elizabeth L.
    Douglas, Vanja C.
    Lee, Sei
    Butte, Atul J.
    Leung, Jacqueline M.
    Donovan, Anne L.
    [J]. BMC ANESTHESIOLOGY, 2022, 22 (01)
  • [5] Using Machine Learning to Identify Health Outcomes from Electronic Health Record Data
    Wong, Jenna
    Murray Horwitz, Mara
    Zhou, Li
    Toh, Sengwee
    [J]. CURRENT EPIDEMIOLOGY REPORTS, 2018, 5 (04) : 331 - 342
  • [6] Using Machine Learning to Identify Health Outcomes from Electronic Health Record Data
    Jenna Wong
    Mara Murray Horwitz
    Li Zhou
    Sengwee Toh
    [J]. Current Epidemiology Reports, 2018, 5 : 331 - 342
  • [7] Classifying Pseudogout Using Machine Learning Approaches With Electronic Health Record Data
    Tedeschi, Sara K.
    Cai, Tianrun
    He, Zeling
    Ahuja, Yuri
    Hong, Chuan
    Yates, Katherine A.
    Dahal, Kumar
    Xu, Chang
    Lyu, Houchen
    Yoshida, Kazuki
    Solomon, Daniel H.
    Cai, Tianxi
    Liao, Katherine P.
    [J]. ARTHRITIS CARE & RESEARCH, 2021, 73 (03) : 442 - 448
  • [8] Classifying Pseudogout Using Machine Learning Approaches with Electronic Health Record Data
    Tedeschi, Sara K.
    Cai, Tianrun
    He, Zeling
    Ahuja, Yuri
    Hong, Chuan
    Yates, Katherine
    Dahal, Kumar
    Xu, Chang
    Lyu, Houchen
    Yoshida, Kazuki
    Solomon, Daniel
    Cai, Tianxi
    Liao, Katherine
    [J]. ARTHRITIS & RHEUMATOLOGY, 2019, 71
  • [9] Potential Biases in Machine Learning Algorithms Using Electronic Health Record Data
    Gianfrancesco, Milena A.
    Tamang, Suzanne
    Yazdany, Jinoos
    Schmajuk, Gabriela
    [J]. JAMA INTERNAL MEDICINE, 2018, 178 (11) : 1544 - 1547
  • [10] Assessing stroke severity using electronic health record data: a machine learning approach
    Emily Kogan
    Kathryn Twyman
    Jesse Heap
    Dejan Milentijevic
    Jennifer H. Lin
    Mark Alberts
    [J]. BMC Medical Informatics and Decision Making, 20