Fast and Robust Algorithm for Fundamental Matrix Estimation

被引:1
|
作者
Zhang, Ming [1 ,2 ]
Wang, Guanghui [1 ]
Chao, Haiyang [1 ]
Wu, Fuchao [2 ]
机构
[1] Univ Kansas, Sch Engn, Lawrence, KS 66045 USA
[2] Chinese Acad Sci, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
关键词
Fundamental matrix; Robust estimation; Outlier elimination; EPIPOLAR GEOMETRY;
D O I
10.1007/978-3-319-20801-5_34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fundamental matrix estimation from two views plays an important role in 3D computer vision. In this paper, a fast and robust algorithm is proposed for the fundamental matrix estimation in the presence of outliers. Instead of algebra error, the reprojection error is adopted to evaluate the confidence of the fundamental matrix. Assuming Gaussian image noise, it is proved that the reprojection error can be described by a chi-square distribution, and thus, the outliers can be eliminated using the 3-sigma principle. With this strategy, the inlier set is robustly established in only two steps. Compared to classical RANSAC-based strategies, the proposed algorithm is very efficient with higher accuracy. Experimental evaluations and comparisons with previous methods demonstrate the effectiveness and advantages of the proposed approach.
引用
下载
收藏
页码:316 / 322
页数:7
相关论文
共 50 条
  • [41] Fundamental matrix estimation by multiobjective genetic algorithm with Taguchi's method
    Tang, Cheng-Yuan
    Wu, Yi-Leh
    Peng, Chien-Chin
    APPLIED SOFT COMPUTING, 2012, 12 (01) : 553 - 558
  • [42] An Improved Algorithm of Fundamental Matrix Estimation based on Epipolar Line Restriction
    Zheng, Jiangbin
    Shi, Wenbo
    ICSP: 2008 9TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, VOLS 1-5, PROCEEDINGS, 2008, : 1351 - 1355
  • [43] A Robust Fundamental Matrix Estimation Method Based on Epipolar Geometric Error Criterion
    Yan, Kun
    Zhao, Rujin
    Liu, Enhai
    Ma, Yuebo
    IEEE ACCESS, 2019, 7 (147523-147533) : 147523 - 147533
  • [44] Robust and fast algorithm for estimating fundamental periodicity of jet engine modulation signals
    Yong, Yang Woo
    Hoon, Park Ji
    Young, Song Won
    Hoon, Myung Noh
    IET RADAR SONAR AND NAVIGATION, 2016, 10 (07): : 1286 - 1294
  • [45] Automatic Point Matching and Robust Fundamental Matrix Estimation for Hybrid Camera Scenarios
    Bastanlar, Yalin
    Temizel, Alptekin
    Yardimci, Yasemin
    2009 IEEE 17TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, VOLS 1 AND 2, 2009, : 439 - +
  • [46] Robust matrix completion DOA estimation algorithm for sparse array
    Zhang Y.
    Dong M.
    Chen B.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2024, 46 (05): : 1477 - 1483
  • [47] Fast DOA estimation algorithm using pseudo covariance matrix
    Kim, JT
    Han, DS
    57TH IEEE VEHICULAR TECHNOLOGY CONFERENCE, VTC 2003-SPRING, VOLS 1-4, PROCEEDINGS, 2003, : 519 - 523
  • [48] Fast DOA estimation algorithm using pseudocovariance matrix.
    Kim, JT
    Moon, SH
    Han, DS
    Cho, MJ
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2005, 53 (04) : 1346 - 1351
  • [49] noRANSAC for fundamental matrix estimation
    Bellavia, Fabio
    Tegolo, Domenico
    PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2011, 2011,
  • [50] Deep Fundamental Matrix Estimation
    Ranftl, Rene
    Koltun, Vladlen
    COMPUTER VISION - ECCV 2018, PT I, 2018, 11205 : 292 - 309