Input Feature Mappings-Based Deep Residual Networks for Fault Diagnosis of Rolling Element Bearing With Complicated Dataset

被引:26
|
作者
Hou, Liangsheng [1 ]
Jiang, Ruizheng [1 ]
Tan, Yanghui [1 ]
Zhang, Jundong [1 ]
机构
[1] Dalian Maritime Univ, Coll Marine Engn, Dalian 116026, Peoples R China
来源
IEEE ACCESS | 2020年 / 8卷
关键词
Rolling element bearing; fault diagnosis; signal-to-input feature mappings; deep residual networks; CONVOLUTIONAL NEURAL-NETWORKS; COMPONENT ANALYSIS; AUTOENCODER; ENTROPY; MODEL;
D O I
10.1109/ACCESS.2020.3028465
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Most rolling element bearing (REB) fault diagnosis algorithms are evaluated on the Case Western Reserve University (CWRU) bearing dataset for its popularity and simplicity. However, the diagnosis accuracy on CWRU bearing dataset is overly saturated; it is nearly up to 100%. In this study, an input feature mappings (IFMs)-based deep residual network (ResNet) is proposed to conduct detailed and comprehensive fault diagnosis on REB with complicated bearing dataset. Firstly, a new data preprocessing method named as a signal-to-IFMs method is proposed to automatically extract features from raw signals without predefined parameters. Then, a deep ResNet is used as the fault classifier to learn the discriminative features from IFMs and identify the faults of REB. Finally, the proposed model is evaluated on the artificial, real, and mixed damages of the Paderborn university bearing dataset. The proposed method yields the average testing accuracies of 99.7%, 99.7%, and 99.81% in artificial, real, and mixed bearing damages, which outperforms other methods.
引用
收藏
页码:180967 / 180976
页数:10
相关论文
共 50 条
  • [1] A fault diagnosis method of rolling bearing based on improved deep residual shrinkage networks
    Tong, Jinyu
    Tang, Shiyu
    Wu, Yi
    Pan, Haiyang
    Zheng, Jinde
    [J]. MEASUREMENT, 2023, 206
  • [2] Fault Diagnosis for Rolling Bearings Based on Multiscale Feature Fusion Deep Residual Networks
    Wu, Xiangyang
    Shi, Haibin
    Zhu, Haiping
    [J]. ELECTRONICS, 2023, 12 (03)
  • [3] Rolling Bearing Fault Diagnosis Using Improved Deep Residual Shrinkage Networks
    Zhang, Zhijin
    Li, He
    Chen, Lei
    Han, Ping
    [J]. SHOCK AND VIBRATION, 2021, 2021
  • [4] Fault Diagnosis for Rolling Bearing Based on Deep Residual Neural Network
    Sun, Yi
    Gao, Hongli
    Hong, Xin
    Song, Hongliang
    Liu, Qi
    [J]. 2018 INTERNATIONAL CONFERENCE ON SENSING, DIAGNOSTICS, PROGNOSTICS, AND CONTROL (SDPC), 2018, : 421 - 425
  • [5] Deep neural networks-based rolling bearing fault diagnosis
    Chen, Zhiqiang
    Deng, Shengcai
    Chen, Xudong
    Li, Chuan
    Sanchez, Rene-Vinicio
    Qin, Huafeng
    [J]. MICROELECTRONICS RELIABILITY, 2017, 75 : 327 - 333
  • [6] Rolling bearing fault diagnosis based on deep learning and chaotic feature fusion
    Jin, Jiang-Tao
    Xu, Zi-Fei
    Li, Chun
    Miao, Wei-Pao
    Xiao, Jun-Qing
    Sun, Kang
    [J]. Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2022, 39 (01): : 109 - 116
  • [7] Research on Intelligent Fault Diagnosis of Rolling Bearing Based on Improved Deep Residual Network
    Hao, Xinyu
    Zheng, Yuan
    Lu, Li
    Pan, Hong
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (22):
  • [8] Deep Residual Network Combined with Transfer Learning Based Fault Diagnosis for Rolling Bearing
    Zhou, Jianmin
    Yang, Xiaotong
    Li, Jiahui
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (15):
  • [9] Fault feature extraction of rolling element bearing based on EVMD
    Danchen Zhu
    Guoqiang Liu
    Wei He
    Bolong Yin
    [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43
  • [10] Fault feature extraction of rolling element bearing based on EVMD
    Zhu, Danchen
    Liu, Guoqiang
    He, Wei
    Yin, Bolong
    [J]. JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2021, 43 (12)