Pclust: protein network visualization highlighting experimental data

被引:6
|
作者
Li, Wenlin [1 ]
Kinch, Lisa N. [2 ]
Grishin, Nick V. [1 ,2 ]
机构
[1] Univ Texas SW Med Ctr Dallas, Dept Biophys & Biochem, Dallas, TX 75390 USA
[2] Univ Texas SW Med Ctr Dallas, Howard Hughes Med Inst, Dallas, TX 75390 USA
基金
美国国家卫生研究院;
关键词
SIMILARITY NETWORKS; GENERATION; PREDICTION; SEQUENCE;
D O I
10.1093/bioinformatics/btt451
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
One approach to infer functions of new proteins from their homologs utilizes visualization of an all-against-all pairwise similarity network (A2ApsN) that exploits the speed of BLAST and avoids the complexity of multiple sequence alignment. However, identifying functions of the protein clusters in A2ApsN is never trivial, due to a lack of linking characterized proteins to their relevant information in current software packages. Given the database errors introduced by automatic annotation transfer, functional deduction should be made from proteins with experimental studies, i.e. 'reference proteins'. Here, we present a web server, termed Pclust, which provides a user-friendly interface to visualize the A2ApsN, placing emphasis on such 'reference proteins' and providing access to their full information in source databases, e. g. articles in PubMed. The identification of 'reference proteins' and the ease of cross-database linkage will facilitate understanding the functions of protein clusters in the network, thus promoting interpretation of proteins of interest.
引用
收藏
页码:2647 / 2648
页数:2
相关论文
共 50 条
  • [21] Effective Network Analytics: Network Visualization and Graph Data Management
    Wu, Hsiang-Yun
    Klein, Karsten
    Yan, Da
    [J]. IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2023, 43 (03) : 10 - 11
  • [22] Visualization of protein-protein interaction network for knowledge discovery
    Zhu, WZ
    Lin, X
    Hu, XH
    Sokhansanj, BA
    [J]. 2005 IEEE International Conference on Granular Computing, Vols 1 and 2, 2005, : 373 - 377
  • [23] An Interactive Visualization System for Network Security Data
    Li Zheng
    Gang Yu
    Yuntian Zheng
    [J]. Journal of Signal Processing Systems, 2023, 95 : 393 - 405
  • [24] NeuroDAVIS: A neural network model for data visualization
    Maitra, Chayan
    Seal, Dibyendu B.
    De, Rajat K.
    [J]. NEUROCOMPUTING, 2024, 573
  • [25] Visualization of network data for effective semantic analysis
    Centre for Artificial Intelligence and Robotics , C V Raman Nagar, Bangalore, India
    [J]. IEEE Workshop Comput. Intell.: Theor., Appl. Future Dir., WCI, 2015,
  • [26] netflower: Dynamic Network Visualization for Data Journalists
    Stoiber, C.
    Rind, A.
    Grassinger, F.
    Gutounig, R.
    Goldgruber, E.
    Sedlmair, M.
    Emrich, S.
    Aigner, W.
    [J]. COMPUTER GRAPHICS FORUM, 2019, 38 (03) : 699 - 711
  • [27] Hierarchical visualization of network intrusion detection data
    Itoh, T
    Takakura, H
    Sawada, A
    Koyamada, K
    [J]. IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2006, 26 (02) : 40 - 47
  • [28] Semantic Network Visualization of Cultural Heritage Data
    Shabani, Shaban
    Liu, Zhan
    Sokhn, Maria
    [J]. CURRENT TRENDS IN WEB ENGINEERING (ICWE 2018), 2018, 11153 : 288 - 291
  • [29] Network Analysis for the Visualization and Analysis of Qualitative Data
    Pokorny, Jennifer J.
    Norman, Alex
    Zanesco, Anthony P.
    Bauer-Wu, Susan
    Sahdra, Baljinder K.
    Saron, Clifford D.
    [J]. PSYCHOLOGICAL METHODS, 2018, 23 (01) : 169 - 183
  • [30] An Interactive Visualization System for Network Security Data
    Zheng, Li
    Yu, Gang
    Zheng, Yuntian
    [J]. JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2023, 95 (2-3): : 393 - 405