Distribution of inverses in polynomial rings

被引:4
|
作者
Banks, WD
Shparlinski, IE
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Macquarie Univ, Dept Comp, Sydney, NSW 2109, Australia
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2001年 / 12卷 / 03期
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
D O I
10.1016/S0019-3577(01)80012-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F-p be the finite field with p elements, and let F (X) is an element of F-p[X] be a square-free polynomial. We show that in the ring R = F-p[X]/F(X), the inverses of polynomials of small height are uniformly distributed. We also show that for any set L subset of R of very small cardinality, for almost all G is an element of R the set of inverses {(G + f) (1)\f is an element of L} are uniformly distributed. These questions are motivated by applications to the NTRU cryptosystem.
引用
收藏
页码:303 / 315
页数:13
相关论文
共 50 条