INNER-ITERATION KRYLOV SUBSPACE METHODS FOR LEAST SQUARES PROBLEMS

被引:19
|
作者
Morikuni, Keiichi [1 ]
Hayami, Ken [2 ]
机构
[1] Grad Univ Adv Studies Sokendai, Sch Multidisciplinary Sci, Dept Informat, Chiyoda Ku, Tokyo 1018430, Japan
[2] Grad Univ Adv Studies Sokendai, Natl Inst Informat, Dept Informat, Sch Multidisciplinary Sci,Chiyoda Ku, Tokyo 1018430, Japan
关键词
least squares problems; iterative method; preconditioner; inner-outer iteration; Krylov subspace method; GMRES method; CG method; Cimmino's method; Kaczmarz's method; SOR method; GMRES METHODS; PRECONDITIONER; SOR;
D O I
10.1137/110828472
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Stationary inner iterations in combination with Krylov subspace methods are proposed for overdetermined least squares problems. The inner iterations are efficient in terms of computational work and memory and also serve as powerful preconditioners for ill-conditioned and rank-deficient problems. Theoretical justifications for using the inner iterations as preconditioners are presented. Numerical experiments on overdetermined sparse least squares problems show that the proposed methods outperform previous methods, especially for ill-conditioned and rank-deficient problems.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 50 条
  • [31] A Gauss-Newton iteration for Total Least Squares problems
    Fasino, Dario
    Fazzi, Antonio
    [J]. BIT NUMERICAL MATHEMATICS, 2018, 58 (02) : 281 - 299
  • [32] Krylov subspace methods for saddle point problems with indefinite preconditioning
    Rozlozník, M
    Simoncini, V
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2002, 24 (02) : 368 - 391
  • [33] Krylov subspace methods for solving large scale matrix problems
    Dai, H.
    [J]. Nanjing Hangkong Hangtian Daxue Xuebao/Journal of Nanjing University of Aeronautics and Astronautics, 2001, 33 (02):
  • [34] Solution of robust linear regression problems by Krylov subspace methods
    Baryamureeba, V
    [J]. LARGE-SCALE SCIENTIFIC COMPUTING, 2003, 2907 : 67 - 75
  • [35] Enriched Krylov subspace methods for ill-posed problems
    Calvetti, D
    Reichel, L
    Shuibi, A
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 362 : 257 - 273
  • [36] Linearized Krylov subspace Bregman iteration with nonnegativity constraint
    Alessandro Buccini
    Mirjeta Pasha
    Lothar Reichel
    [J]. Numerical Algorithms, 2021, 87 : 1177 - 1200
  • [37] Domain-Decomposition Approach to Krylov Subspace Iteration
    Iupikov, O. A.
    Craeye, C.
    Maaskant, R.
    Ivashina, M. V.
    [J]. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2016, 15 : 1414 - 1417
  • [38] Linearized Krylov subspace Bregman iteration with nonnegativity constraint
    Buccini, Alessandro
    Pasha, Mirjeta
    Reichel, Lothar
    [J]. NUMERICAL ALGORITHMS, 2021, 87 (03) : 1177 - 1200
  • [39] KRYLOV SUBSPACE METHODS ON SUPERCOMPUTERS
    SAAD, Y
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1989, 10 (06): : 1200 - 1232
  • [40] Preconditioned Krylov subspace methods
    Saad, Y
    [J]. ALGORITHMS FOR LARGE SCALE LINEAR ALGEBRAIC SYSTEMS: APPLICATIONS IN SCIENCE AND ENGINEERING, 1998, 508 : 131 - 149