Spatiotemporal data analysis with chronological networks

被引:19
|
作者
Ferreira, Leonardo N. [1 ,2 ,3 ]
Vega-Oliveros, Didier A. [4 ,5 ]
Cotacallapa, Moshe [1 ]
Cardoso, Manoel F. [6 ]
Quiles, Marcos G. [7 ]
Zhao, Liang [8 ]
Macau, Elbert E. N. [1 ,7 ]
机构
[1] Natl Inst Space Res, Associated Lab Comp & Appl Math, Sao Jose Dos Campos, SP, Brazil
[2] Humboldt Univ, Dept Phys, Berlin, Germany
[3] Potsdam Inst Climate Impact Res, Potsdam, Germany
[4] Univ Estadual Campinas, Inst Comp, Campinas, SP, Brazil
[5] Indiana Univ, Sch Informat Comp & Engn, Bloomington, IN USA
[6] Natl Inst Space Res, Ctr Earth Syst Sci, Sao Jose Dos Campos, SP, Brazil
[7] Univ Fed Sao Paulo, Inst Sci & Technol, Sao Jose Dos Campos, SP, Brazil
[8] Univ Sao Paulo, Dept Comp & Math, Fac Philosophy Sci & Letters Ribeirao Preto FFCLR, Ribeirao Preto, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
TIME-SERIES; COOCCURRENCE; ALGORITHM;
D O I
10.1038/s41467-020-17634-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The number of spatiotemporal data sets has increased rapidly in the last years, which demands robust and fast methods to extract information from this kind of data. Here, we propose a network-based model, called Chronnet, for spatiotemporal data analysis. The network construction process consists of dividing a geometric space into grid cells represented by nodes connected chronologically. Strong links in the network represent consecutive recurrent events between cells. The chronnet construction process is fast, making the model suitable to process large data sets. Using artificial and real data sets, we show how chronnets can capture data properties beyond simple statistics, like frequent patterns, spatial changes, outliers, and spatiotemporal clusters. Therefore, we conclude that chronnets represent a robust tool for the analysis of spatiotemporal data sets. Extracting central information from ever-growing data generated in our lives calls for new data mining methods. Ferreira et al. show a simple model, called chronnets, that can capture frequent patterns, spatial changes, outliers, and spatiotemporal clusters.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Spatiotemporal data analysis with chronological networks
    Leonardo N. Ferreira
    Didier A. Vega-Oliveros
    Moshé Cotacallapa
    Manoel F. Cardoso
    Marcos G. Quiles
    Liang Zhao
    Elbert E. N. Macau
    Nature Communications, 11
  • [2] From spatio-temporal data to chronological networks: An application to wildfire analysis
    Vega-Oliveros, Didier A.
    Cotacallapa, Moshe
    Ferreira, Leonardo N.
    Quiles, Marcos G.
    Zhao, Liang
    Macau, Elbert E. N.
    Cardoso, Manoel F.
    SAC '19: PROCEEDINGS OF THE 34TH ACM/SIGAPP SYMPOSIUM ON APPLIED COMPUTING, 2019, : 675 - 682
  • [3] Analysis of Spatiotemporal Data Imputation Methods for Traffic Flow Data in Urban Networks
    Joelianto, Endra
    Fathurrahman, Muhammad Farhan
    Sutarto, Herman Yoseph
    Semanjski, Ivana
    Putri, Adiyana
    Gautama, Sidharta
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (05)
  • [4] Spatiotemporal social (STS) data model: correlating social networks and spatiotemporal data
    Khetarpaul, Sonia
    Gupta, S. K.
    Subramaniam, L. Venkata
    SOCIAL NETWORK ANALYSIS AND MINING, 2016, 6 (01)
  • [5] SOME EXAMPLES OF ANALYSIS OF CHRONOLOGICAL DATA
    ESCOUFIER, Y
    BIOMETRICS, 1980, 36 (02) : 364 - 364
  • [6] A spatiotemporal data model for dynamic transit networks
    Huang, R.
    Peng, Z. -R.
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2008, 22 (05) : 527 - 545
  • [7] Spatiotemporal Analysis of Developing Brain Networks
    He, Ping
    Xu, Xiaohua
    Zhang, Han
    Li, Gang
    Nie, Jingxin
    Yap, Pew-Thian
    Shen, Dinggang
    FRONTIERS IN NEUROINFORMATICS, 2018, 12
  • [8] USE OF JEFFREYS DIVERGENCE FOR ANALYSIS OF MULTIDIMENSIONAL CHRONOLOGICAL DATA
    NAKACHE, JP
    CHEVALIER, A
    BIOMETRICS, 1980, 36 (02) : 365 - 365
  • [9] Spatiotemporal analysis of optical imaging data
    Sornborger, A
    Sailstad, C
    Kaplan, E
    Sirovich, L
    NEUROIMAGE, 2003, 18 (03) : 610 - 621
  • [10] Immersive Analysis of Spatiotemporal Racing Data
    Weidinger, Nicole
    El Sayed, Neven
    Luzhnica, Granit
    Schreck, Tobias
    Veas, Eduardo
    ACM SYMPOSIUM ON SPATIAL USER INTERACTION, SUI 2023, 2023,