Smallest Complex Nilpotent Orbits with Real Points

被引:0
|
作者
Okuda, Takayuki [1 ]
机构
[1] Hiroshima Univ, Grad Sch Sci, Dept Math, Hiroshima 7398526, Japan
关键词
Nilpotent orbit; real simple Lie algebra; REPRESENTATIONS; CLASSIFICATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let g be a non-compact real simple Lie algebra without complex structure, and denote by g(C) the complexification of g. This paper focuses on non-zero nilpotent adjoint orbits in g(C) meeting g. We show that the poset consisting of such nilpotent orbits equipped with the closure ordering has the minimum O-min,g(GC). Furthermore, we determine such O-min,g(GC) in terms of the Dynkin-Kostant classification even in the cases where O-min,g(GC) does not coincide with the minimal nilpotent orbit in g(C). We also prove that the intersection O-min,g(GC) boolean AND g is the union of all minimal nilpotent orbits in g.
引用
收藏
页码:507 / 533
页数:27
相关论文
共 50 条
  • [11] Nilpotent orbits in real symmetric pairs and stationary black holes
    Dietrich, Heiko
    De Graaf, WillemA.
    Ruggeri, Daniele
    Trigiante, Mario
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2017, 65 (02):
  • [12] Representations Associated to Small Nilpotent Orbits for Real Spin Groups
    Barbasch, Dan
    Tsai, Wan-Yu
    [J]. JOURNAL OF LIE THEORY, 2018, 28 (04) : 987 - 1042
  • [13] REPRESENTATIONS ASSOCIATED TO SMALL NILPOTENT ORBITS FOR COMPLEX SPIN GROUPS
    Barbasch, Dan
    Tsai, Wan-Yu
    [J]. REPRESENTATION THEORY, 2018, 22 : 202 - 222
  • [14] On the parametrization of nilpotent orbits
    Maity, Chandan
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (02): : 469 - 479
  • [15] Series of nilpotent orbits
    Landsberg, JM
    Manivel, L
    Westbury, BW
    [J]. EXPERIMENTAL MATHEMATICS, 2004, 13 (01) : 13 - 29
  • [16] COMPLEXITY AND NILPOTENT ORBITS
    PANYUSHEV, DI
    [J]. MANUSCRIPTA MATHEMATICA, 1994, 83 (3-4) : 223 - 237
  • [17] REMARK ON NILPOTENT ORBITS
    WOLF, JA
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 51 (01) : 213 - 216
  • [18] ON THE SINGULARITIES OF NILPOTENT ORBITS
    HINICH, V
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1991, 73 (03) : 297 - 308
  • [19] ORBITS OF NILPOTENT MATRICES
    DJOKOVIC, DZ
    MALZAN, J
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1980, 32 (AUG) : 157 - 158
  • [20] A LiE subroutine for computing prehomogeneous spaces associated with real nilpotent orbits
    Jackson, SG
    Noël, AG
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2005, PT 3, 2005, 3482 : 512 - 521