Uncertainty Handling in Geospatial Data

被引:0
|
作者
Doucette, Peter J. [1 ]
Motsko, Dennis J. [2 ]
Sorenson, Matthew [1 ]
White, Devin A. [1 ]
机构
[1] Contractor Natl Geospatial Intelligence Agcy, East Campus, Springfield, VA 22150 USA
[2] Natl Geospatial Intelligence Agcy, Springfield, VA 22150 USA
来源
GEOSPATIAL INFOFUSION II | 2012年 / 8396卷
关键词
photogrammetry; error propagation; simulation; vector data; conflation; provenance;
D O I
10.1117/12.918538
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The topic of data uncertainty handling is relevant to essentially any scientific activity that involves making measurements of real world phenomena. A rigorous accounting of uncertainty can be crucial to the decision-making process. The purpose of this paper is to provide a brief overview on select issues in handling uncertainty in geospatial data We begin with photogrammetric concepts of uncertainty handling, followed by investigating uncertainty issues related to processing vector (object) representations of geospatial information. Suggestions are offered for enhanced modeling, visualization, and exploitation of local uncertainty information in applications such as fusion and conflation. Stochastic simulation can provide an effective approach to improve understanding of the consequences uncertainty propagation in common geospatial processes such as path finding. Future work should consider the development of standardized modeling techniques for stochastic simulation for more complex object data, to include spatial and attribute information.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Annotating Uncertainty in Geospatial and Environmental Data
    Ioup, Elias
    Yang, Zhao
    Barre, Brent
    Sample, John
    Shaw, Kevin B.
    Abdelguerfi, Mahdi
    IEEE INTERNET COMPUTING, 2015, 19 (01) : 18 - 27
  • [2] Rigorous geospatial data uncertainty models for GISs
    Alesheikh, AA
    Blais, JAR
    Chapman, MA
    Karimi, H
    SPATIAL ACCURACY ASSESSMENT: LAND INFORMATION UNCERTAINTY IN NATURAL RESOURCES, 1999, : 195 - 202
  • [3] Encoding and handling geospatial data with hierarchical triangular meshes
    Dutton, G
    ADVANCES IN GIS RESEARCH II, 1997, : 505 - 518
  • [4] Handling Uncertainty in Data Services Composition
    Amdouni, Soumaya
    Barhamgi, Mahmoud
    Benslimane, Djamal
    Faiz, Rim
    2014 IEEE INTERNATIONAL CONFERENCE ON SERVICES COMPUTING (SCC 2014), 2014, : 653 - 660
  • [5] Evaluating the Open Source Data Containers for Handling Big Geospatial Raster Data
    Hu, Fei
    Xu, Mengchao
    Yang, Jingchao
    Liang, Yanshou
    Cui, Kejin
    Little, Michael M.
    Lynnes, Christopher S.
    Duffy, Daniel Q.
    Yang, Chaowei
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2018, 7 (04):
  • [6] Handling Data Uncertainty in Decision Making with COMET
    Salabun, Wojciech
    Karczmarczyk, Artur
    Watrobski, Jaroslaw
    Jankowski, Jaroslaw
    2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 1478 - 1484
  • [7] Handling Uncertainty in Geo-Spatial Data
    Zufle, Andreas
    Trajcevski, Goce
    Pfoser, Dieter
    Renz, Matthias
    Rice, Matthew T.
    Leslie, Timothy
    Delamater, Paul
    Emrich, Tobias
    2017 IEEE 33RD INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2017), 2017, : 1467 - 1470
  • [8] Using spatial data support for reducing uncertainty in geospatial applications
    T. Hong
    K. Hart
    L.-K. Soh
    A. Samal
    GeoInformatica, 2014, 18 : 63 - 92
  • [9] Using spatial data support for reducing uncertainty in geospatial applications
    Hong, T.
    Hart, K.
    Soh, L. -K.
    Samal, A.
    GEOINFORMATICA, 2014, 18 (01) : 63 - 92
  • [10] Geospatial big data handling theory and methods: A review and research challenges
    Li, Songnian
    Dragicevic, Suzana
    Castro, Francesc Anton
    Sester, Monika
    Winter, Stephan
    Coltekin, Arzu
    Pettit, Christopher
    Jiang, Bin
    Haworth, James
    Stein, Alfred
    Cheng, Tao
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2016, 115 : 119 - 133