Geospatial big data handling theory and methods: A review and research challenges

被引:297
|
作者
Li, Songnian [1 ]
Dragicevic, Suzana [2 ]
Castro, Francesc Anton [3 ]
Sester, Monika [4 ]
Winter, Stephan [5 ]
Coltekin, Arzu [6 ]
Pettit, Christopher [7 ]
Jiang, Bin [8 ]
Haworth, James [9 ]
Stein, Alfred [10 ]
Cheng, Tao [9 ]
机构
[1] Ryerson Univ, Toronto, ON, Canada
[2] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada
[3] Tech Univ Denmark, DK-2800 Lyngby, Denmark
[4] Leibniz Univ Hannover, Hannover, Germany
[5] Univ Melbourne, Melbourne, Vic 3010, Australia
[6] Univ Zurich, CH-8006 Zurich, Switzerland
[7] Univ New S Wales, Sydney, NSW 2052, Australia
[8] Univ Gavle, Gavle, Sweden
[9] UCL, London WC1E 6BT, England
[10] Univ Twente, POB 217, NL-7500 AE Enschede, Netherlands
基金
加拿大自然科学与工程研究理事会; 英国工程与自然科学研究理事会;
关键词
Big data; Geospatial; Data handling; Analytics; Spatial modeling; Review; VISUAL ANALYTICS; GEOGRAPHICAL INFORMATION; HEAD/TAIL BREAKS; SPATIAL DATA; SYSTEM; CLASSIFICATION; VISUALIZATION; STATISTICS; REGRESSION; MOVEMENT;
D O I
10.1016/j.isprsjprs.2015.10.012
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Big data has now become a strong focus of global interest that is increasingly attracting the attention of academia, industry, government and other organizations. Big data can be situated in the disciplinary area of traditional geospatial data handling theory and methods. The increasing volume and varying format of collected geospatial big data presents challenges in storing, managing, processing, analyzing, visualizing and verifying the quality of data. This has implications for the quality of decisions made with big data. Consequently, this position paper of the International Society for Photogrammetry and Remote Sensing (ISPRS) Technical Commission II (TC II) revisits the existing geospatial data handling methods and theories to determine if they are still capable of handling emerging geospatial big data. Further, the paper synthesises problems, major issues and challenges with current developments as well as recommending what needs to be developed further in the near future. (C) 2015 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:119 / 133
页数:15
相关论文
共 50 条
  • [1] Geospatial Big Data or Big Geospatial Data: A Bibliometric Review
    Ndu, Chidinma Godsgood
    Shoko, Moreblessings
    [J]. SOUTH AFRICAN JOURNAL OF GEOMATICS, 2024, 13 (01): : 158 - 171
  • [2] Handling big data: research challenges and future directions
    I. Anagnostopoulos
    S. Zeadally
    E. Exposito
    [J]. The Journal of Supercomputing, 2016, 72 : 1494 - 1516
  • [3] Handling big data: research challenges and future directions
    Anagnostopoulos, I.
    Zeadally, S.
    Exposito, E.
    [J]. JOURNAL OF SUPERCOMPUTING, 2016, 72 (04): : 1494 - 1516
  • [4] Geospatial Big Data: Challenges and Opportunities
    Lee, Jae-Gil
    Kang, Minseo
    [J]. BIG DATA RESEARCH, 2015, 2 (02) : 74 - 81
  • [5] A review of drought monitoring with big data: Issues, methods, challenges and research directions
    Balti, Hanen
    Ben Abbes, Ali
    Mellouli, Nedra
    Farah, Imed Riadh
    Sang, Yanfang
    Lamolle, Myriam
    [J]. ECOLOGICAL INFORMATICS, 2020, 60
  • [6] Big Geospatial Data or Geospatial Big Data? A Systematic Narrative Review on the Use of Spatial Data Infrastructures for Big Geospatial Sensing Data in Public Health
    Koh, Keumseok
    Hyder, Ayaz
    Karale, Yogita
    Boulos, Maged N. Kamel
    [J]. REMOTE SENSING, 2022, 14 (13)
  • [7] A Review of Missing Data Handling Methods in Education Research
    Cheema, Jehanzeb R.
    [J]. REVIEW OF EDUCATIONAL RESEARCH, 2014, 84 (04) : 487 - 508
  • [8] Evaluating the Open Source Data Containers for Handling Big Geospatial Raster Data
    Hu, Fei
    Xu, Mengchao
    Yang, Jingchao
    Liang, Yanshou
    Cui, Kejin
    Little, Michael M.
    Lynnes, Christopher S.
    Duffy, Daniel Q.
    Yang, Chaowei
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2018, 7 (04):
  • [9] Big Geospatial Data and Data-Driven Methods for Urban Dengue Risk Forecasting: A Review
    Li, Zhichao
    Dong, Jinwei
    [J]. REMOTE SENSING, 2022, 14 (19)
  • [10] Research challenges of big data
    Younas, Muhammad
    [J]. SERVICE ORIENTED COMPUTING AND APPLICATIONS, 2019, 13 (02) : 105 - 107