Spaces of sections of Banach algebra bundles

被引:5
|
作者
Farjoun, Emmanuel Dror [1 ]
Schochet, Claude L. [2 ]
机构
[1] Hebrew Univ Jerusalem, Dept Math, IL-91904 Jerusalem, Israel
[2] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
关键词
general linear group of a Banach algebra; spectral sequences; localization; Bott-stable; K-theory for Banach algebras; unstable K-theory; RATIONAL HOMOTOPY;
D O I
10.1017/is012002001jkt183
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that B is a G-Banach algebra over F = R or C, X is a finite dimensional compact metric space, zeta : P -> X is a standard principal G-bundle, and A(zeta) = Gamma(X, P x(G) B) is the associated algebra of sections. We produce a spectral sequence which converges to pi(*)(GL(o)A(zeta)) with E--p,q(2) congruent to H-p(X; pi(q)(GL(o)B)). A related spectral sequence converging to K*+1(A(zeta)) (the real or complex topological K-theory) allows us to conclude that if B is Bott-stable, (i.e., if pi(*)(GL(o)B) -> K*+1(B) is an isomorphism for all * > 0) then so is A(zeta).
引用
收藏
页码:279 / 298
页数:20
相关论文
共 50 条