Spaces of sections of Banach algebra bundles

被引:5
|
作者
Farjoun, Emmanuel Dror [1 ]
Schochet, Claude L. [2 ]
机构
[1] Hebrew Univ Jerusalem, Dept Math, IL-91904 Jerusalem, Israel
[2] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
关键词
general linear group of a Banach algebra; spectral sequences; localization; Bott-stable; K-theory for Banach algebras; unstable K-theory; RATIONAL HOMOTOPY;
D O I
10.1017/is012002001jkt183
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that B is a G-Banach algebra over F = R or C, X is a finite dimensional compact metric space, zeta : P -> X is a standard principal G-bundle, and A(zeta) = Gamma(X, P x(G) B) is the associated algebra of sections. We produce a spectral sequence which converges to pi(*)(GL(o)A(zeta)) with E--p,q(2) congruent to H-p(X; pi(q)(GL(o)B)). A related spectral sequence converging to K*+1(A(zeta)) (the real or complex topological K-theory) allows us to conclude that if B is Bott-stable, (i.e., if pi(*)(GL(o)B) -> K*+1(B) is an isomorphism for all * > 0) then so is A(zeta).
引用
收藏
页码:279 / 298
页数:20
相关论文
共 50 条
  • [1] BANACH ALGEBRA BUNDLES
    GELBAUM, BR
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1969, 28 (02) : 337 - &
  • [2] BSE Banach modules and bundles of Banach spaces
    Robbins, DA
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 1998, 24 (03): : 489 - 505
  • [3] SPACES OF PROJECTIONS IN A BANACH ALGEBRA
    PORTA, H
    RECHT, L
    [J]. ACTA CIENTIFICA VENEZOLANA, 1987, 38 (04): : 408 - 426
  • [4] Spaces of CD0-functions and CD0-sections of Banach bundles
    Gutman, A. E.
    Koptev, A., V
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2009, 6 : 219 - 242
  • [5] On holomorphic Banach vector bundles over Banach spaces
    Imre Patyi
    [J]. Mathematische Annalen, 2008, 341 : 455 - 482
  • [6] On holomorphic Banach vector bundles over Banach spaces
    Patyi, Imre
    [J]. MATHEMATISCHE ANNALEN, 2008, 341 (02) : 455 - 482
  • [7] Isomorphisms into section spaces of Banach bundles
    Hoim, Terje
    Robbins, D. A.
    [J]. QUAESTIONES MATHEMATICAE, 2007, 30 (01) : 97 - 113
  • [8] PROPERTIES OF THE SPACE OF SECTIONS OF SOME BANACH BUNDLES
    Lazar, Aldo J.
    [J]. REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 65 (01): : 17 - 22
  • [9] Banach algebra of the Fourier multipliers on weighted Banach function spaces
    Karlovich, Alexei
    [J]. CONCRETE OPERATORS, 2015, 2 (01): : 27 - 36
  • [10] On convergence of sections of sequences in Banach spaces
    Aywa S.
    Fourie J.H.
    [J]. Rendiconti del Circolo Matematico di Palermo, 2000, 49 (1) : 141 - 150