Maximum-likelihood estimation of circle parameters via convolution

被引:31
|
作者
Zelniker, EE [1 ]
Clarkson, IVL [1 ]
机构
[1] Univ Queensland, Sch Informat Technol & Elect Engn, St Lucia, Qld 4072, Australia
关键词
circle fitting; convolution; Cramer-Rao lower bound (CRLB); least squares; maximum-likelihood estimation (MLE);
D O I
10.1109/TIP.2005.863965
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The accurate fitting of a circle to noisy measurements of circumferential points is a much studied problem in the literature. In this paper, we present an interpretation of the maximum-likelihood estimator (MLE) and the Delogne-Kasa estimator (DKE) for circle-center and radius estimation in terms of convolution on an image which is ideal in a certain sense. We use our convolution-based MLE approach to find good estimates for the parameters of a circle in digital images. In digital images, it is then possible to treat these estimates as preliminary estimates into various other numerical techniques which further refine them to achieve subpixel accuracy. We also investigate the relationship between the convolution of an ideal image with a "phase-coded kernel" (PCK) and the MLE. This is related to the "phase-coded annulus" which was introduced by Atherton and Kerbyson who proposed it as one of a number of new convolution kernels for estimating circle center and radius. We show that the PCK is an approximate MILE (AMLE). We compare our AMLE method to the MLE and the DKE as well as the Cramer-Rao Lower Bound in ideal images and in both real and synthetic digital images.
引用
收藏
页码:865 / 876
页数:12
相关论文
共 50 条
  • [21] A Fast Algorithm for Maximum-Likelihood Estimation of Harmonic Chirp Parameters
    Jensen, Tobias Lindstrom
    Nielsen, Jesper Kjaer
    Jensen, Jesper Rindom
    Christensen, Mads Graesboll
    Jensen, Soren Holdt
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (19) : 5137 - 5152
  • [22] ON THE MAXIMUM-LIKELIHOOD ESTIMATION OF THE PARAMETERS OF A GAUSSIAN MOVING AVERAGE PROCESS
    GODOLPHIN, EJ
    DEGOOIJER, JG
    [J]. BIOMETRIKA, 1982, 69 (02) : 443 - 451
  • [23] MAXIMUM-LIKELIHOOD ESTIMATION OF THE PARAMETERS OF A SYSTEM OF SIMULTANEOUS REGRESSION EQUATIONS
    DURBIN, J
    [J]. ECONOMETRIC THEORY, 1988, 4 (01) : 159 - 170
  • [24] PINT: Maximum-likelihood Estimation of Pulsar Timing Noise Parameters
    Susobhanan, Abhimanyu
    Kaplan, David L.
    Archibald, Anne M.
    Luo, Jing
    Ray, Paul S.
    Pennucci, Timothy T.
    Ransom, Scott M.
    Agazie, Gabriella
    Fiore, William
    Larsen, Bjorn
    O'Neill, Patrick
    van Haasteren, Rutger
    Anumarlapudi, Akash
    Bachetti, Matteo
    Bhakta, Deven
    Champagne, Chloe A.
    Cromartie, H. Thankful
    Demorest, Paul B.
    Jennings, Ross J.
    Kerr, Matthew
    Levina, Sasha
    McEwen, Alexander
    Shapiro-Albert, Brent J.
    Swiggum, Joseph K.
    [J]. ASTROPHYSICAL JOURNAL, 2024, 971 (02):
  • [25] MAXIMUM-LIKELIHOOD ESTIMATION OF RECEIVER OPERATING CHARACTERISTIC CURVE PARAMETERS
    OGILVIE, JC
    CREELMAN, CD
    [J]. JOURNAL OF MATHEMATICAL PSYCHOLOGY, 1968, 5 (03) : 377 - &
  • [27] MAXIMUM-LIKELIHOOD ESTIMATION OF THE PARAMETERS OF A MULTIVARIATE NORMAL-DISTRIBUTION
    ANDERSON, TW
    OLKIN, I
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1985, 70 (OCT) : 147 - 171
  • [28] MAXIMUM-LIKELIHOOD ESTIMATION OF LINEAR SIGNAL PARAMETERS FOR POISSON PROCESSES
    UNSER, M
    EDEN, M
    [J]. IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1988, 36 (06): : 942 - 945
  • [29] ITERATIVE MAXIMUM-LIKELIHOOD ESTIMATION OF PARAMETERS OF THE TOEPLITZ CORRELATION STRUCTURE
    MUKHERJEE, BN
    MAITI, SS
    [J]. BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 1988, 41 : 63 - 99
  • [30] ON MAXIMUM-LIKELIHOOD AND RESTRICTED MAXIMUM-LIKELIHOOD APPROACHES TO ESTIMATION OF VARIANCE-COMPONENTS
    BROWN, KG
    BURGESS, MA
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1984, 19 (01) : 59 - 77