Fast Johnson-Lindenstrauss Transform for Robust and Secure Image Hashing

被引:0
|
作者
Lv, Xudong [1 ]
Wang, Z. Jane [1 ]
机构
[1] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V5Z 1M9, Canada
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dimension reduction based techniques, such as singular value decomposition (SVD) and non-negative matrix factorization (NMF), have been proved to provide excellent performance for robust and secure image hashing by retaining the essential features of the original image matrix while preventing intentional attacks. In this paper, we introduce a recently proposed low-distortion, dimension reduction technique, referred as Fast Johnson-Lindenstrauss Transform (FJLT), and propose the use of FJLT for image hashing. FJLT shares the low-distortion characteristics of a random projection but requires a much lower complexity. These two desirable properties make it suitable for image hashing. Our experiment results show that the proposed FJLT-based hash yields good robustness under a wide range of attacks. Furthermore, the influence of secret key on the proposed hashing algorithm is evaluated by receiver operating characteristics (ROC) graph, revealing the efficiency of the proposed approach.
引用
收藏
页码:729 / 733
页数:5
相关论文
共 50 条
  • [21] Johnson-Lindenstrauss Lemma for Circulant Matrices
    Hinrichs, Aicke
    Vybiral, Jan
    RANDOM STRUCTURES & ALGORITHMS, 2011, 39 (03) : 391 - 398
  • [22] NEW BOUNDS FOR CIRCULANT JOHNSON-LINDENSTRAUSS EMBEDDINGS
    Zhang, Hui
    Cheng, Lizhi
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2014, 12 (04) : 695 - 705
  • [23] PERFORMANCE OF JOHNSON-LINDENSTRAUSS TRANSFORM FOR k-MEANS AND k-MEDIANS CLUSTERING
    Makarychev, Konstantin
    Makarychev, Yury
    Razenshteyn, Ilya
    SIAM JOURNAL ON COMPUTING, 2023, 52 (02)
  • [24] Performance of Johnson-Lindenstrauss Transform for k-Means and k-Medians Clustering
    Makarychev, Konstantin
    Makarychev, Yury
    Razenshteyn, Ilya
    PROCEEDINGS OF THE 51ST ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '19), 2019, : 1027 - 1038
  • [25] Almost optimal explicit Johnson-Lindenstrauss families
    Harvard University, Cambridge, MA, United States
    不详
    不详
    Lect. Notes Comput. Sci., (628-639):
  • [26] THE JOHNSON-LINDENSTRAUSS LEMMA AND THE SPHERICITY OF SOME GRAPHS
    FRANKL, P
    MAEHARA, H
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1988, 44 (03) : 355 - 362
  • [27] A variant of the Johnson-Lindenstrauss lemma for circulant matrices
    Vybiral, Jan
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (04) : 1096 - 1105
  • [28] Weak*-sequential properties of Johnson-Lindenstrauss spaces
    Aviles, Antonio
    Martinez-Cervantes, Gonzalo
    Rodriguez, Jose
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (10) : 3051 - 3066
  • [29] Dimensionality reduction: beyond the Johnson-Lindenstrauss bound
    Bartal, Yair
    Recht, Ben
    Schulman, Leonard J.
    PROCEEDINGS OF THE TWENTY-SECOND ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2011, : 868 - 887
  • [30] Approximate Euclidean lengths and distances beyond Johnson-Lindenstrauss
    Sobczyk, Aleksandros
    Luisier, Mathieu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,