TWO NONPARAMETRIC APPROACHES TO MEAN ABSOLUTE DEVIATION PORTFOLIO SELECTION MODEL

被引:19
|
作者
Dai, Zhifeng [1 ,2 ]
Zhu, Huan [1 ,2 ]
Wen, Fenghua [3 ]
机构
[1] Changsha Univ Sci & Technol, Coll Math & Stat, Changsha 410114, Peoples R China
[2] Changsha Univ Sci & Technol, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Peoples R China
[3] Cent South Univ, Coll Business, Dept Finance, Changsha 410083, Hunan, Peoples R China
关键词
Portfolio selection; nonparametric estimation method; mean absolute deviation model; REGRESSION; RETURNS; ALGORITHM; OIL;
D O I
10.3934/jimo.2019054
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we apply two nonparametric approaches to mean absolute deviation (MAD) portfolio selection model. The first one is to use the nonparametric kernel mean estimation to replace the returns of assets with five different kernel functions. Then, we construct the nonparametric kernel mean estimation-based MAD portfolio model. The second one is to utilize the nonparametric kernel median estimation to replace the returns of assets with five different kernel functions. Then, we construct the nonparametric kernel median estimation-based MAD portfolio model. We also extend the two kinds of nonparametric approach to mean-Conditional Value-at-Risk portfolio model. Finally, we give the in-sample and out-of-sample analysis of the proposed strategies and compare the performance of the proposed models by using actual stock returns in Shanghai stock exchange of China. The experimental results show the nonparametric estimation-based portfolio models are more efficient than the original portfolio model.
引用
收藏
页码:2283 / 2303
页数:21
相关论文
共 50 条
  • [31] A Hybrid Fuzzy-SCOOT Algorithm to Optimize Possibilistic Mean Semi-absolute Deviation Model for Optimal Portfolio Selection
    Pahade, Jagdish Kumar
    Jha, Manoj
    [J]. INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2022, 24 (04) : 1958 - 1973
  • [32] Portfolio Optimization with a Mean-Absolute Deviation-Entropy Multi-Objective Model
    Lam, Weng Siew
    Lam, Weng Hoe
    Jaaman, Saiful Hafizah
    [J]. ENTROPY, 2021, 23 (10)
  • [33] Robust mean absolute deviation portfolio model under Affine Data Perturbation uncertainty set
    Dai, Zhifeng
    Wen, Fenghua
    [J]. 2013 10TH INTERNATIONAL CONFERENCE ON SERVICE SYSTEMS AND SERVICE MANAGEMENT (ICSSSM), 2013, : 472 - 475
  • [35] Asymptotic behavior of Mean-CVaR portfolio selection model under nonparametric framework
    Jun Zhao
    Yi Zhang
    [J]. Applied Mathematics-A Journal of Chinese Universities, 2017, 32 : 79 - 92
  • [36] Asymptotic behavior of Mean-CVaR portfolio selection model under nonparametric framework
    ZHAO Jun
    ZHANG Yi
    [J]. Applied Mathematics:A Journal of Chinese Universities, 2017, 32 (01) : 79 - 92
  • [37] Asymptotic behavior of Mean-CVaR portfolio selection model under nonparametric framework
    Zhao, Jun
    Zhang, Yi
    [J]. APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2017, 32 (01): : 79 - 92
  • [38] Dynamic optimal portfolio with maximum absolute deviation model
    Yu, Mei
    Wang, Shouyang
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2012, 53 (02) : 363 - 380
  • [39] Dynamic optimal portfolio with maximum absolute deviation model
    Mei Yu
    Shouyang Wang
    [J]. Journal of Global Optimization, 2012, 53 : 363 - 380
  • [40] Mean-CVaR portfolio selection: A nonparametric estimation framework
    Yao, Haixiang
    Li, Zhongfei
    Lai, Yongzeng
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2013, 40 (04) : 1014 - 1022