Graph Convolution Based Spatial-Temporal Attention LSTM Model for Flood Forecasting

被引:7
|
作者
Feng, Jun [1 ,2 ]
Sha, Haichao [1 ,2 ,3 ]
Ding, Yukai [1 ,2 ,4 ]
Yan, Le [1 ,2 ]
Yu, Zhangheng [2 ]
机构
[1] Hohai Univ, Minist Water Resources, Key Lab Water Big Data Technol, Nanjing, Peoples R China
[2] Hohai Univ, Coll Comp & Informat, Nanjing, Peoples R China
[3] Renmin Univ China, Beijing, Peoples R China
[4] Minist Water Resources, Informat Ctr, Beijing, Peoples R China
基金
国家重点研发计划;
关键词
Graph Convolution network; LSTM; Attention mechanism; Flood forecasting; Dropedge mechanism; THRESHOLDS; RAINFALL;
D O I
10.1109/IJCNN55064.2022.9892371
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate flood forecast is crucial to ensure economic and ecological environment safety. Due to the complex factors affecting flood runoff in the small and medium-sized river basins, the traditional model cannot yield satisfactory prediction results. In this paper, we propose a novel Graph Convolution based spatial-temporal Attention LSTM(AGCLSTM) network to tackle the time series prediction problem in the flood forecasting domain. To be specific, our model contains two major modules: 1) the spatial-temporal GCN module with the dropedge mechanism which adequately captures the spatial and temporal characteristics of topological river graphs; 2) the spatial-temporal LSTM module to effectively extract temporal and spatial dynamic correlation in time series hydrological data. Experiments show that our model has excellent performance in flood peak prediction and flow calibration compared with the existing machine learning methods.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Future locations prediction with multi-graph attention networks based on spatial-temporal LSTM framework
    Li, Zhao-Yang
    Shao, Xin-Hui
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (14): : 20020 - 20041
  • [32] EEG-Based Emotion Recognition Using Spatial-Temporal Graph Convolutional LSTM With Attention Mechanism
    Feng, Lin
    Cheng, Cheng
    Zhao, Mingyan
    Deng, Huiyuan
    Zhang, Yong
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (11) : 5406 - 5417
  • [33] Spatial-temporal graph neural network based on gated convolution and topological attention for traffic flow prediction
    Bai, Dewei
    Xia, Dawen
    Huang, Dan
    Hu, Yang
    Li, Yantao
    Li, Huaqing
    APPLIED INTELLIGENCE, 2023, 53 (24) : 30843 - 30864
  • [34] Spatial-temporal graph neural network based on gated convolution and topological attention for traffic flow prediction
    Dewei Bai
    Dawen Xia
    Dan Huang
    Yang Hu
    Yantao Li
    Huaqing Li
    Applied Intelligence, 2023, 53 : 30843 - 30864
  • [35] Spatial-Temporal Graph Attention Networks: A Deep Learning Approach for Traffic Forecasting
    Zhang, Chenhan
    Yu, James J. Q.
    Liu, Yi
    IEEE ACCESS, 2019, 7 : 166246 - 166256
  • [36] Spatial-Temporal Convolutional Graph Attention Networks for Citywide Traffic Flow Forecasting
    Zhang, Xiyue
    Huang, Chao
    Xu, Yong
    Xia, Lianghao
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 1853 - 1862
  • [37] An Attention Enhanced Spatial-Temporal Graph Convolutional LSTM Network for Action Recognition in Karate
    Guo, Jianping
    Liu, Hong
    Li, Xi
    Xu, Dahong
    Zhang, Yihan
    APPLIED SCIENCES-BASEL, 2021, 11 (18):
  • [38] Spatial-Temporal Attention Graph Convolution Network on Edge Cloud for Traffic Flow Prediction
    Lai, Qifeng
    Tian, Jinyu
    Wang, Wei
    Hu, Xiping
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (04) : 4565 - 4576
  • [39] A New Partitioned Spatial-Temporal Graph Attention Convolution Network for Human Motion Recognition
    Guo, Keyou
    Wang, Pengshuo
    Shi, Peipeng
    He, Chengbo
    Wei, Caili
    APPLIED SCIENCES-BASEL, 2023, 13 (03):
  • [40] STMAG: A spatial-temporal mixed attention graph-based convolution model for multi-data flow safety prediction
    Wang, Jingjuan
    Chen, Qingkui
    Gong, Huilin
    INFORMATION SCIENCES, 2020, 525 : 16 - 36