INRUSH CURRENT DETECTION USING WAVELET TRANSFORM AND ARTIFICIAL NEURAL NETWORK

被引:0
|
作者
Gondane, Prachi R. [1 ]
Sheikh, Rukhsar M. [1 ]
Chawre, Kajol A. [1 ]
Wasnik, Vivian V. [1 ]
Badar, Altaf [1 ]
Hasan, M. T. [2 ]
机构
[1] Anjuman Coll Engn & Technol, Dept EE, Nagpur, Maharashtra, India
[2] Anjuman Coll Engn & Technol, Dept EXTC, Nagpur, Maharashtra, India
关键词
Inrush current; Wavelet Transform; Artificial Neural Network; DISCRIMINATION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, wavelet transform and artificial neural network (ANN) is used for processing current waveforms and distinguish between inrush current, fault and normal situation. Wavelet transform is used to analyze and detect various frequency components present in the signal. ANN is a tool which is utilized for classification of data based on specific properties. Different types of power system combinations are used in simulation. Fault detection is an important part for safety of electric power system. For the synthesis of signals and the classification of current conditions, WT and ANN are used in collectively.
引用
收藏
页码:866 / 868
页数:3
相关论文
共 50 条
  • [41] River flow forecasting using different artificial neural network algorithms and wavelet transform
    Partal, Turgay
    [J]. CANADIAN JOURNAL OF CIVIL ENGINEERING, 2009, 36 (01) : 26 - 39
  • [42] Faults Classification of a Scooter Engine Platform Using Wavelet Transform and Artificial Neural Network
    Wu, J-D.
    Chang, E-C.
    Liao, S-Y.
    Kuo, J-M.
    Huang, C-K.
    [J]. IMECS 2009: INTERNATIONAL MULTI-CONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, VOLS I AND II, 2009, : 58 - 63
  • [43] Daily streamflow forecasting using a wavelet transform and artificial neural network hybrid models
    Guimaraes Santos, Celso Augusto
    Lima da Silva, Gustavo Barbosa
    [J]. HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2014, 59 (02): : 312 - 324
  • [44] Stitching defect detection and classification using wavelet transform and BP neural network
    Wong, W. K.
    Yuen, C. W. M.
    Fan, D. D.
    Chan, L. K.
    Fung, E. H. K.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (02) : 3845 - 3856
  • [45] Automatic Epileptic EEG Detection Using Wavelet Transform and Probabilistic Neural Network
    Guo, Ling
    Rivero, Daniel
    Munteanu, Cristian R.
    Pazos, Alejandro
    [J]. 2010 INTERNATIONAL COLLOQUIUM ON COMPUTING, COMMUNICATION, CONTROL, AND MANAGEMENT (CCCM2010), VOL III, 2010, : 354 - 357
  • [46] Ventricular ectopic beat detection using a wavelet transform and a convolutional neural network
    Li, Qichen
    Liu, Chengyu
    Li, Qiao
    Shashikumar, Supreeth P.
    Nemati, Shamim
    Shen, Zichao
    Clifford, Gari D.
    [J]. PHYSIOLOGICAL MEASUREMENT, 2019, 40 (05)
  • [47] A microcalcification detection using adaptive contrast enhancement on wavelet transform and neural network
    Kang, HK
    Ro, YM
    Kim, SM
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2006, E89D (03): : 1280 - 1287
  • [48] Anomalous Propagation Echo Detection Using Neural Network and Discrete Wavelet Transform
    Lee, H.
    Kim, E. K.
    Kim, S.
    [J]. PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INDUSTRIAL ENGINEERING (AIIE 2015), 2015, 123 : 188 - 190
  • [49] MDDC: melanoma detection using discrete wavelet transform and convolutional neural network
    Asadi O.
    Yekkalam A.
    Manthouri M.
    [J]. Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (09) : 12959 - 12966
  • [50] EPILEPTIC SEIZURE DETECTION USING A NEURAL NETWORK ENSEMBLE METHOD AND WAVELET TRANSFORM
    Ebrahimpour, Reza
    Babakhani, Kioumars
    Arani, Seyed Ali Asghar Abbaszadeh
    Masoudnia, Saeed
    [J]. NEURAL NETWORK WORLD, 2012, 22 (03) : 291 - 310