Nonlinearly Activated Complex-Valued Gradient Neural Network for Complex Matrix Inversion

被引:0
|
作者
Yi, Qian [1 ]
Xiao, Lin [1 ]
Zhang, Yongsheng [1 ]
Liao, Bolin [1 ]
Ding, Lei [1 ]
Peng, Hua [1 ]
机构
[1] Jishou Univ, Coll Informat Sci & Engn, Jishou 416000, Peoples R China
基金
中国国家自然科学基金;
关键词
Complex matrix inversion; gradient neural network; complex domain; nonlinear activation function; FINITE-TIME SOLUTION; DESIGN; DYNAMICS; VERIFICATION; EQUATION; SCHEME; MODEL;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new nonlinear activated complex-valued gradient neural network is proposed, which is used for complex matrix inversion in the complex area. This work focuses on the inversion of complex-valued matrices in complex domains rather than finding the inverse of real-valued matrices. Compared with the traditional linear complex gradient neural network (GNN), the main contribution of this paper introduces a nonlinear activation function, which can effectively improve the convergence rate of the GNN model. The computer simulation substantiate the effectiveness and superiority of nonlinearly activated complex valued gradient neural network (NACVGNN) to the matrix inversion, as compared with the linear complex gradient neural network.
引用
收藏
页码:44 / 48
页数:5
相关论文
共 50 条
  • [21] Iterative photonic processor for fast complex-valued matrix inversion
    Chen, Minjia
    Cheng, Qixiang
    Ayata, Masafumi
    Holm, Mark
    Penty, Richard
    [J]. PHOTONICS RESEARCH, 2022, 10 (11) : 2488 - 2501
  • [22] Complex projective synchronization of complex-valued neural network with structure identification
    Zhang, Hao
    Wang, Xing-yuan
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (12): : 5011 - 5025
  • [23] An optical neural chip for implementing complex-valued neural network
    Zhang, H.
    Gu, M.
    Jiang, X. D.
    Thompson, J.
    Cai, H.
    Paesani, S.
    Santagati, R.
    Laing, A.
    Zhang, Y.
    Yung, M. H.
    Shi, Y. Z.
    Muhammad, F. K.
    Lo, G. Q.
    Luo, X. S.
    Dong, B.
    Kwong, D. L.
    Kwek, L. C.
    Liu, A. Q.
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [24] An optical neural chip for implementing complex-valued neural network
    H. Zhang
    M. Gu
    X. D. Jiang
    J. Thompson
    H. Cai
    S. Paesani
    R. Santagati
    A. Laing
    Y. Zhang
    M. H. Yung
    Y. Z. Shi
    F. K. Muhammad
    G. Q. Lo
    X. S. Luo
    B. Dong
    D. L. Kwong
    L. C. Kwek
    A. Q. Liu
    [J]. Nature Communications, 12
  • [25] A Complex Gradient Neural Dynamics for Fast Complex Matrix Inversion
    Xiao, Lin
    Liao, Bolin
    Zeng, Qinli
    Ding, Lei
    Lu, Rongbo
    [J]. ADVANCES IN NEURAL NETWORKS, PT I, 2017, 10261 : 521 - 528
  • [26] A Novel Gradient Neural Network for Tackling the Complex-valued System of Linear Equations Online
    Ding, Lei
    Xiao, Lin
    Zhou, Kaiqing
    Liao, Bolin
    Peng, Chen
    Li, Jianfeng
    Mo, Liping
    [J]. 2020 10TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST), 2020, : 38 - 43
  • [27] Improving Gradient Regularization using Complex-Valued Neural Networks
    Yeats, Eric
    Chen, Yiran
    Li, Hai
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [28] Combined Complex-Valued Artificial Neural Network (CCVANN)
    Ceylan, Murat
    [J]. WORLD CONGRESS ON ENGINEERING, WCE 2011, VOL II, 2011, : 955 - 959
  • [29] Intelligent beamforming by using a complex-valued neural network
    Suksmono, AB
    Hirose, A
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2004, 15 (3-4) : 139 - 147
  • [30] Enhanced Gradient Descent Algorithms for Complex-Valued Neural Networks
    Popa, Calin-Adrian
    [J]. 16TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2014), 2014, : 272 - 279