Behavior of the empirical Wasserstein distance in R under moment conditions

被引:7
|
作者
Dedecker, Jerome [1 ]
Merlevede, Florence [2 ]
机构
[1] Univ Paris 05, Sorbonne Paris Cite, Lab MAP5, UMR 8145, Paris, France
[2] Univ Paris Est, LAMA, UMR 8050, UPEM,CNRS,UPEC, Paris, France
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2019年 / 24卷
关键词
empirical measure; Wasserstein distance; independent and identically distributed random variables; deviation inequalities; moment inequalities; almost sure rates of convergence; CONVERGENCE; ASYMPTOTICS;
D O I
10.1214/19-EJP266
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We establish some deviation inequalities, moment bounds and almost sure results for the Wasserstein distance of order p is an element of [1, infinity) between the empirical measure of independent and identically distributed R-d-valued random variables and the common distribution of the variables. We only assume the existence of a (strong or weak) moment of order rp for some r > 1, and we discuss the optimality of the bounds.
引用
收藏
页数:32
相关论文
共 50 条
  • [21] Precise limit in Wasserstein distance for conditional empirical measures of Dirichlet diffusion processes
    Wang, Feng-Yu
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (11)
  • [22] Simple bounds for convergence of empirical and occupation measures in 1-Wasserstein distance
    Boissard, Emmanuel
    ELECTRONIC JOURNAL OF PROBABILITY, 2011, 16 : 2296 - 2333
  • [23] Limit theorems in Wasserstein distance for empirical measures of diffusion processes on Riemannian manifolds
    Wang, Feng-Yu
    Zhu, Jie-Xiang
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (01): : 437 - 475
  • [24] Smooth p-Wasserstein Distance: Structure, Empirical Approximation, and Statistical Applications
    Nietert, Sloan
    Goldfeld, Ziv
    Kato, Kengo
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [25] Wasserstein distance based deep multi-feature adversarial transfer diagnosis approach under variable working conditions
    She, D.
    Peng, N.
    Jia, M.
    Pecht, M. G.
    JOURNAL OF INSTRUMENTATION, 2020, 15 (06):
  • [26] Regularized Wasserstein Distance-Based Joint Distribution Adaptation Approach for Fault Detection Under Variable Working Conditions
    Yang, Dan
    Peng, Xin
    Su, Cheng
    Li, Linlin
    Cao, Zhixing
    Zhong, Weimin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 11
  • [27] Approximation rate in Wasserstein distance of probability measures on the real line by deterministic empirical measures
    Bencheikh, O.
    Jourdain, B.
    JOURNAL OF APPROXIMATION THEORY, 2022, 274
  • [28] Reweighting samples under covariate shift using a Wasserstein distance criterion
    Reygner, Julien
    Touboul, Adrien
    ELECTRONIC JOURNAL OF STATISTICS, 2022, 16 (01): : 3278 - 3314
  • [29] MCKEAN-VLASOV SDES WITH DRIFTS DISCONTINUOUS UNDER WASSERSTEIN DISTANCE
    Huang, Xing
    Wang, Feng-Yu
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (04) : 1667 - 1679
  • [30] Reconstructing discrete measures from projections. Consequences on the empirical Sliced Wasserstein Distance
    Tanguy, Eloi
    Flamary, Remi
    Delon, Julie
    COMPTES RENDUS MATHEMATIQUE, 2024, 362