Restoration of rhythmicity in diffusively coupled dynamical networks

被引:132
|
作者
Zou, Wei [1 ,2 ,3 ]
Senthilkumar, D. V. [3 ,4 ]
Nagao, Raphael [5 ]
Kiss, Istvan Z. [5 ]
Tang, Yang [3 ,6 ]
Koseska, Aneta [7 ,8 ]
Duan, Jinqiao [1 ,2 ,9 ]
Kurths, Juergen [3 ,10 ,11 ,12 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Ctr Math Sci, Wuhan 430074, Peoples R China
[3] Potsdam Inst Climate Impact Res, D-14415 Potsdam, Germany
[4] SASTRA Univ, Sch Elect & Elect Engn, Ctr Nonlinear Sci & Engn, Thanjavur 613401, India
[5] St Louis Univ, Dept Chem, St Louis, MO 63103 USA
[6] E China Univ Sci & Technol, Minist Educ, Key Lab Adv Control & Optimizat Chem Proc, Shanghai 200237, Peoples R China
[7] Max Planck Inst Mol Physiol, Dept Syst Cell Biol, D-44227 Dortmund, Germany
[8] Macedonian Acad Sci & Arts, Res Ctr Comp Sci & Informat Technol, Skopje, North Macedonia
[9] IIT, Dept Appl Math, Chicago, IL 60616 USA
[10] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
[11] Univ Aberdeen, Inst Complex Syst & Math Biol, Aberdeen AB24 3FX, Scotland
[12] Nizhnii Novgorod State Univ, Dept Control Theory, Nizhnii Novgorod 606950, Russia
基金
中国国家自然科学基金; 美国国家科学基金会; 巴西圣保罗研究基金会;
关键词
DELAY-INDUCED DEATH; AMPLITUDE DEATH; ELECTRICAL SYNAPSES; OSCILLATION DEATH; SYNCHRONIZATION; POPULATIONS; STATES; PHASE; RELAXATION; KURAMOTO;
D O I
10.1038/ncomms8709
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Oscillatory behaviour is essential for proper functioning of various physical and biological processes. However, diffusive coupling is capable of suppressing intrinsic oscillations due to the manifestation of the phenomena of amplitude and oscillation deaths. Here we present a scheme to revoke these quenching states in diffusively coupled dynamical networks, and demonstrate the approach in experiments with an oscillatory chemical reaction. By introducing a simple feedback factor in the diffusive coupling, we show that the stable (in) homogeneous steady states can be effectively destabilized to restore dynamic behaviours of coupled systems. Even a feeble deviation from the normal diffusive coupling drastically shrinks the death regions in the parameter space. The generality of our method is corroborated in diverse non-linear systems of diffusively coupled paradigmatic models with various death scenarios. Our study provides a general framework to strengthen the robustness of dynamic activity in diffusively coupled dynamical networks.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Waves in diffusively coupled bursting cells
    Raghavachari, S
    Glazier, JA
    [J]. PHYSICAL REVIEW LETTERS, 1999, 82 (14) : 2991 - 2994
  • [32] Synchronization of Intermittently Coupled Dynamical Networks
    Zhang, Gang
    Chen, Guanrong
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [33] Adaptive Synchronization of Diffusively Coupled Systems
    Shafi, S. Yusef
    Arcak, Murat
    [J]. IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2015, 2 (02): : 131 - 141
  • [34] Chaotic Behavior in Diffusively Coupled Systems
    Eddie Nijholt
    Tiago Pereira
    Fernando C. Queiroz
    Dmitry Turaev
    [J]. Communications in Mathematical Physics, 2023, 401 : 2715 - 2756
  • [35] Feedback-induced stationary localized patterns in networks of diffusively coupled bistable elements
    Kouvaris, Nikos E.
    Mikhailov, Alexander S.
    [J]. EPL, 2013, 102 (01)
  • [36] Synchronization in Networks of Diffusively Time-Delay Coupled (Semi-)Passive Systems
    Steur, Erik
    Nijmeijer, Henk
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2011, 58 (06) : 1358 - 1371
  • [37] Spatiotemporal characteristics in systems of diffusively coupled excitable slow-fast FitzHugh-Rinzel dynamical neurons
    Mondal, Arnab
    Mondal, Argha
    Sharma, Sanjeev Kumar
    Upadhyay, Ranjit Kumar
    Antonopoulos, Chris G.
    [J]. CHAOS, 2021, 31 (10)
  • [38] Strong Structural Controllability of Diffusively Coupled Networks: Comparison of Bounds Based on Distances and Zero Forcing
    Yazicioglu, Yasin
    Shabbir, Mudassir
    Abbas, Waseem
    Koutsoukos, Xenofon
    [J]. 2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 566 - 571
  • [39] GROUP SYNCHRONIZATION OF DIFFUSIVELY COUPLED HARMONIC OSCILLATORS
    Zhao, Liyun
    Liu, Jun
    Xiang, Lan
    Zhou, Jin
    [J]. KYBERNETIKA, 2016, 52 (04) : 629 - 647
  • [40] Acceleration phenomenon in the synchronization of diffusively coupled oscillators
    Huang, Zhi-Long
    Yan, Zhou
    Chen, Guanrong
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (11)