Restoration of rhythmicity in diffusively coupled dynamical networks

被引:132
|
作者
Zou, Wei [1 ,2 ,3 ]
Senthilkumar, D. V. [3 ,4 ]
Nagao, Raphael [5 ]
Kiss, Istvan Z. [5 ]
Tang, Yang [3 ,6 ]
Koseska, Aneta [7 ,8 ]
Duan, Jinqiao [1 ,2 ,9 ]
Kurths, Juergen [3 ,10 ,11 ,12 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Ctr Math Sci, Wuhan 430074, Peoples R China
[3] Potsdam Inst Climate Impact Res, D-14415 Potsdam, Germany
[4] SASTRA Univ, Sch Elect & Elect Engn, Ctr Nonlinear Sci & Engn, Thanjavur 613401, India
[5] St Louis Univ, Dept Chem, St Louis, MO 63103 USA
[6] E China Univ Sci & Technol, Minist Educ, Key Lab Adv Control & Optimizat Chem Proc, Shanghai 200237, Peoples R China
[7] Max Planck Inst Mol Physiol, Dept Syst Cell Biol, D-44227 Dortmund, Germany
[8] Macedonian Acad Sci & Arts, Res Ctr Comp Sci & Informat Technol, Skopje, North Macedonia
[9] IIT, Dept Appl Math, Chicago, IL 60616 USA
[10] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
[11] Univ Aberdeen, Inst Complex Syst & Math Biol, Aberdeen AB24 3FX, Scotland
[12] Nizhnii Novgorod State Univ, Dept Control Theory, Nizhnii Novgorod 606950, Russia
基金
中国国家自然科学基金; 美国国家科学基金会; 巴西圣保罗研究基金会;
关键词
DELAY-INDUCED DEATH; AMPLITUDE DEATH; ELECTRICAL SYNAPSES; OSCILLATION DEATH; SYNCHRONIZATION; POPULATIONS; STATES; PHASE; RELAXATION; KURAMOTO;
D O I
10.1038/ncomms8709
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Oscillatory behaviour is essential for proper functioning of various physical and biological processes. However, diffusive coupling is capable of suppressing intrinsic oscillations due to the manifestation of the phenomena of amplitude and oscillation deaths. Here we present a scheme to revoke these quenching states in diffusively coupled dynamical networks, and demonstrate the approach in experiments with an oscillatory chemical reaction. By introducing a simple feedback factor in the diffusive coupling, we show that the stable (in) homogeneous steady states can be effectively destabilized to restore dynamic behaviours of coupled systems. Even a feeble deviation from the normal diffusive coupling drastically shrinks the death regions in the parameter space. The generality of our method is corroborated in diverse non-linear systems of diffusively coupled paradigmatic models with various death scenarios. Our study provides a general framework to strengthen the robustness of dynamic activity in diffusively coupled dynamical networks.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Restoration of rhythmicity in diffusively coupled dynamical networks
    Wei Zou
    D. V. Senthilkumar
    Raphael Nagao
    István Z. Kiss
    Yang Tang
    Aneta Koseska
    Jinqiao Duan
    Jürgen Kurths
    [J]. Nature Communications, 6
  • [2] Enhancing Synchronizability of Diffusively Coupled Dynamical Networks: A Survey
    Jalili, Mahdi
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2013, 24 (07) : 1009 - 1022
  • [3] Oscillation quenching in diffusively coupled dynamical networks with inertial effects
    Zou, Wei
    Chen, Yuxuan
    Senthilkumar, D. V.
    Kurths, Juergen
    [J]. CHAOS, 2022, 32 (04)
  • [4] Locating line and node disturbances in networks of diffusively coupled dynamical agents
    Delabays, Robin
    Pagnier, Laurent
    Tyloo, Melvyn
    [J]. NEW JOURNAL OF PHYSICS, 2021, 23 (04):
  • [5] Clustering in diffusively coupled networks
    Xia, Weiguo
    Cao, Ming
    [J]. AUTOMATICA, 2011, 47 (11) : 2395 - 2405
  • [6] Local identification in diffusively coupled linear networks
    Kivits, E. M. M.
    Van den Hof, Paul M. J.
    [J]. 2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 874 - 879
  • [7] Localized patterns in homogeneous networks of diffusively coupled reactors
    Moore, PK
    Horsthemke, W
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2005, 206 (1-2) : 121 - 144
  • [8] Pattern Prediction in Networks of Diffusively Coupled Nonlinear Systems
    Rogov, K.
    Pogromsky, A.
    Steur, E.
    Michiels, W.
    Nijmeijer, H.
    [J]. IFAC PAPERSONLINE, 2018, 51 (33): : 62 - 67
  • [9] Identifiability of diffusively coupled linear networks with partial instrumentation
    Kivits, E. M. M.
    Van den Hof, Paul M. J.
    [J]. IFAC PAPERSONLINE, 2023, 56 (02): : 2395 - 2400
  • [10] Monitoring Link Faults in Nonlinear Diffusively Coupled Networks
    Sharf, Miel
    Zelazo, Daniel
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (06) : 2857 - 2872