A stability test for non-commensurate fractional order systems

被引:44
|
作者
Sabatier, Jocelyn [1 ]
Farges, Christophe [1 ]
Trigeassou, Jean-Claude [1 ]
机构
[1] Univ Bordeaux, CNRS, IMS Lab, CRONE Team,UMR 5218, F-33405 Talence, France
关键词
Non-commensurate fractional order systems; Stability; Cauchy's theorem;
D O I
10.1016/j.sysconle.2013.04.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a necessary and sufficient condition to evaluate non-commensurate fractional order systems Bounded Input, Bounded Output stability. This condition is based on an algorithm that relies on a recursively defined closed-loop realization of the system and involves Cauchy's theorem. Its efficiency is attested by several numerical examples. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:739 / 746
页数:8
相关论文
共 50 条
  • [11] Routh table test for stability of commensurate fractional degree polynomials and their commensurate fractional order systems
    Sheng-Guo Wang
    Shu Liang
    Liang Ma
    Kaixiang Peng
    [J]. Control Theory and Technology, 2019, 17 : 297 - 306
  • [12] ON STABILITY OF COMMENSURATE FRACTIONAL ORDER SYSTEMS
    Sabatier, Jocelyn
    Farges, Christophe
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (04):
  • [13] Generalized Algorithm for Estimating Non-Commensurate Fractional-Order Models
    Taskinen, A.
    Roinila, T.
    Vilkko, M.
    [J]. ASIAN JOURNAL OF CONTROL, 2013, 15 (03) : 736 - 740
  • [14] Parameters and fractional differentiation orders estimation for linear continuous-time non-commensurate fractional order systems
    Belkhatir, Zehor
    Laleg-Kirati, Taous Meriem
    [J]. SYSTEMS & CONTROL LETTERS, 2018, 115 : 26 - 33
  • [15] A Novel Procedure for Low-order Realization of Non-Commensurate Fractional Order System
    Zhou, Xingwen
    Geng, Zongsheng
    Tang, Mingming
    Zhao, Dongdong
    Yan, Shi
    [J]. 2024 AUSTRALIAN & NEW ZEALAND CONTROL CONFERENCE, ANZCC, 2024, : 109 - 114
  • [16] A digraph approach to the state-space model realization of MIMO non-commensurate fractional order systems
    Zhao, Dongdong
    Hu, Yang
    Sun, Weiguo
    Zhou, Xingwen
    Xu, Li
    Yan, Shi
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2022, 359 (10): : 5014 - 5035
  • [18] FPGA Implementation of Non-Commensurate Fractional-Order State-Space Models
    Zhou, Xingwen
    Zhao, Dongdong
    Geng, Zongsheng
    Xu, Li
    Yan, Shi
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2023, 70 (09) : 3639 - 3652
  • [19] Stability and resonance conditions of the non-commensurate elementary fractional transfer functions of the second kind
    Ben Hmed, A.
    Amairi, M.
    Aoun, M.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 22 (1-3) : 842 - 865
  • [20] Commensurate and Non-Commensurate Fractional-Order Discrete Models of an Electric Individual-Wheel Drive on an Autonomous Platform
    Bakala, Marcin
    Duch, Piotr
    Machado, J. A. Tenreiro
    Ostalczyk, Piotr
    Sankowski, Dominik
    [J]. ENTROPY, 2020, 22 (03)