A proof of the arithmetic mean-geometric mean inequality

被引:10
|
作者
Alzer, H
机构
来源
AMERICAN MATHEMATICAL MONTHLY | 1996年 / 103卷 / 07期
关键词
D O I
10.2307/2974672
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:585 / 585
页数:1
相关论文
共 50 条
  • [31] Notes on the arithmetic-geometric mean inequality
    Al-Natoor, Ahmad
    Hirzallah, Omar
    Kittaneh, Fuad
    AEQUATIONES MATHEMATICAE, 2024, 98 (6) : 1489 - 1502
  • [32] A mechanically-based proof of the arithmetic mean harmonic mean inequality
    Padron, Miguel A.
    Plaza, Angel
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2021, 52 (08) : 1250 - 1252
  • [33] Note on the geometric-arithmetic mean inequality
    Gluskin, E
    Milman, V
    GEOMETRIC ASPECTS OF FUNCTIONAL ANALYSIS, 2003, 1807 : 131 - 135
  • [34] A refinement of the arithmetic-geometric mean inequality
    Zou, Limin
    Huang, Yi
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2015, 46 (01) : 158 - 160
  • [35] A function-based proof of the harmonic mean - geometric mean - arithmetic mean inequalities
    Plaza, Angel
    MATHEMATICAL GAZETTE, 2022, 106 (565): : 130 - 131
  • [36] Second law of thermodynamics and arithmetic-mean-geometric-mean inequality
    Wang, LQ
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1999, 13 (21-22): : 2791 - 2793
  • [37] The arithmetic-geometric mean inequality of indefinite type
    Moslehian, Mohammad Sal
    Sano, Takashi
    Sugawara, Kota
    ARCHIV DER MATHEMATIK, 2021, 117 (03) : 347 - 359
  • [38] A physical point of view on the arithmetic and geometric mean inequality
    Modestino, M.
    De Luca, R.
    Faella, O.
    EUROPEAN JOURNAL OF PHYSICS, 2024, 45 (01)
  • [39] The matrix arithmetic-geometric mean inequality revisited
    Bhatia, Rajendra
    Kittaneh, Fuad
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (8-9) : 2177 - 2191
  • [40] The arithmetic-geometric mean inequality of indefinite type
    Mohammad Sal Moslehian
    Takashi Sano
    Kota Sugawara
    Archiv der Mathematik, 2021, 117 : 347 - 359