New Variant of Hermite-Jensen-Mercer Inequalities via Riemann-Liouville Fractional Integral Operators

被引:10
|
作者
Kang, Qiong [1 ]
Butt, Saad Ihsan [2 ]
Nazeer, Waqas [3 ]
Nadeem, Mehroz [2 ]
Nasir, Jamshed [2 ]
Yang, Hong [4 ]
机构
[1] Yangtze Univ, Sch Comp Sci, Jingzhou 434023, Peoples R China
[2] Comsat Univ Islamabad, Lahore Campus, Islamabad, Pakistan
[3] Govt Coll Univ, Dept Math, Lahore, Pakistan
[4] Chengdu Univ, Sch Informat Sci & Engn, Chengdu 610106, Peoples R China
来源
JOURNAL OF MATHEMATICS | 2020年 / 2020卷
关键词
CONVEX-FUNCTIONS;
D O I
10.1155/2020/4303727
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, certain Hermite-Hadamard-Mercer-type inequalities are proved via Riemann-Liouville fractional integral operators. We established several new variants of Hermite-Hadamard's inequalities for Riemann-Liouville fractional integral operators by utilizing Jensen-Mercer inequality for differentiable mapping (sic) whose derivatives in the absolute values are convex. Moreover, we construct new lemmas for differentiable functions Upsilon', Upsilon '', and Upsilon''' and formulate related inequalities for these differentiable functions using variants of Holder's inequality.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Generalized inequalities involving fractional operators of the Riemann-Liouville type
    Bosch, Paul
    Carmenate, Hector J.
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    [J]. AIMS MATHEMATICS, 2022, 7 (01): : 1470 - 1485
  • [42] On Some Generalized Integral Inequalities for Riemann-Liouville Fractional Integrals
    Sarikaya, Mehmet Zeki
    Filiz, Hatice
    Kiris, Mehmet Eyup
    [J]. FILOMAT, 2015, 29 (06) : 1307 - 1314
  • [43] Some Riemann-Liouville fractional integral inequalities for convex functions
    Farid, Ghulam
    [J]. JOURNAL OF ANALYSIS, 2019, 27 (04): : 1095 - 1102
  • [44] Some Hermite-Jensen-Mercer type inequalities for k-Caputo-fractional derivatives and related results
    Zhao, Shupeng
    Butt, Saad Ihsan
    Nazeer, Waqas
    Nasir, Jamshed
    Umar, Muhammad
    Liu, Ya
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [45] NEW HERMITE-HADAMARD-FEJER TYPE INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS FOR CONVEX FUNCTIONS
    Qi, Yongfang
    Li, Guoping
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (07)
  • [46] SEVERAL NEW INTEGRAL INEQUALITIES VIA K-RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS OPERATORS
    Butt, S., I
    Bayraktar, B.
    Umar, M.
    [J]. PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2021, 10 (01): : 3 - 22
  • [47] ON POLYA-SZEGO AND CHEBYSHEV TYPES INEQUALITIES INVOLVING THE RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL OPERATORS
    Ntouyas, Sotiris K.
    Agarwal, Praveen
    Tariboon, Jessada
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (02): : 491 - 504
  • [48] New stochastic fractional integral and related inequalities of Jensen–Mercer and Hermite–Hadamard–Mercer type for convex stochastic processes
    Fahd Jarad
    Soubhagya Kumar Sahoo
    Kottakkaran Sooppy Nisar
    Savin Treanţă
    Homan Emadifar
    Thongchai Botmart
    [J]. Journal of Inequalities and Applications, 2023
  • [49] New "Conticrete" Hermite-Hadamard-Jensen-Mercer Fractional Inequalities
    Faisal, Shah
    Adil Khan, Muhammad
    Khan, Tahir Ullah
    Saeed, Tareq
    Alshehri, Ahmed Mohammed
    Nwaeze, Eze R.
    [J]. SYMMETRY-BASEL, 2022, 14 (02):
  • [50] New Riemann-Liouville fractional Hermite-Hadamard type inequalities for harmonically convex functions
    Sanli, Zeynep
    Kunt, Mehmet
    Koroglu, Tuncay
    [J]. ARABIAN JOURNAL OF MATHEMATICS, 2020, 9 (02) : 431 - 441