Audiovisual cross-modal material surface retrieval

被引:4
|
作者
Liu, Zhuokun [1 ]
Liu, Huaping [2 ]
Huang, Wenmei [1 ]
Wang, Bowen [1 ]
Sun, Fuchun [2 ]
机构
[1] State Key Lab Reliabil & Intelligence Elect Equip, Tianjin 300130, Peoples R China
[2] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100084, Peoples R China
来源
NEURAL COMPUTING & APPLICATIONS | 2020年 / 32卷 / 18期
关键词
Cross-modal retrieval; Local receptive fields-based extreme learning machine; Canonical correlation analysis; Material analysis; EXTREME LEARNING-MACHINE; LOCAL RECEPTIVE-FIELDS; PERCEPTION;
D O I
10.1007/s00521-019-04476-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cross-modal retrieval is developed rapidly because it can process the data among different modalities. Aiming at solving the problem that the text and image sometimes cannot perform the true and accurate analysis of the material, a system of audiovisual cross-modal retrieval on material surface is proposed. First, we use local receptive fields-based extreme learning machine to extract sound and image features, and then the sound and image features are mapped to the subspace using canonical correlation analysis and retrieved by Euclidean distance. Finally, the process of audiovisual cross-modal retrieval is realized by the system. The experimental results show that the proposed system has a good application effect on wood. The designed system provides a new idea for research in the field of material identification.
引用
收藏
页码:14301 / 14309
页数:9
相关论文
共 50 条
  • [41] The State of the Art for Cross-Modal Retrieval: A Survey
    Zhou, Kun
    Hassan, Fadratul Hafinaz
    Hoon, Gan Keng
    [J]. IEEE ACCESS, 2023, 11 : 138568 - 138589
  • [42] Special issue on cross-modal retrieval and analysis
    Wu, Jianlong
    Hong, Richang
    Tian, Qi
    [J]. INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2022, 11 (04) : 523 - 524
  • [43] Token Embeddings Alignment for Cross-Modal Retrieval
    Xie, Chen-Wei
    Wu, Jianmin
    Zheng, Yun
    Pan, Pan
    Hua, Xian-Sheng
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 4555 - 4563
  • [44] Semantic consistency hashing for cross-modal retrieval
    Yao, Tao
    Kong, Xiangwei
    Fu, Haiyan
    Tian, Qi
    [J]. NEUROCOMPUTING, 2016, 193 : 250 - 259
  • [45] Robust cross-modal retrieval with alignment refurbishment
    Guo, Jinyi
    Ding, Jieyu
    [J]. FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2023, 24 (10) : 1403 - 1415
  • [46] Fast Unmediated Hashing for Cross-Modal Retrieval
    Nie, Xiushan
    Liu, Xingbo
    Xi, Xiaoming
    Li, Chenglong
    Yin, Yilong
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (09) : 3669 - 3678
  • [47] Analyzing semantic correlation for cross-modal retrieval
    Liang Xie
    Peng Pan
    Yansheng Lu
    [J]. Multimedia Systems, 2015, 21 : 525 - 539
  • [48] Masking Modalities for Cross-modal Video Retrieval
    Gabeur, Valentin
    Nagrani, Arsha
    Sun, Chen
    Alahari, Karteek
    Schmid, Cordelia
    [J]. 2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 2111 - 2120
  • [49] Special issue on cross-modal retrieval and analysis
    Jianlong Wu
    Richang Hong
    Qi Tian
    [J]. International Journal of Multimedia Information Retrieval, 2022, 11 : 523 - 524
  • [50] Deep Memory Network for Cross-Modal Retrieval
    Song, Ge
    Wang, Dong
    Tan, Xiaoyang
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 21 (05) : 1261 - 1275