Audiovisual cross-modal material surface retrieval

被引:4
|
作者
Liu, Zhuokun [1 ]
Liu, Huaping [2 ]
Huang, Wenmei [1 ]
Wang, Bowen [1 ]
Sun, Fuchun [2 ]
机构
[1] State Key Lab Reliabil & Intelligence Elect Equip, Tianjin 300130, Peoples R China
[2] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100084, Peoples R China
来源
NEURAL COMPUTING & APPLICATIONS | 2020年 / 32卷 / 18期
关键词
Cross-modal retrieval; Local receptive fields-based extreme learning machine; Canonical correlation analysis; Material analysis; EXTREME LEARNING-MACHINE; LOCAL RECEPTIVE-FIELDS; PERCEPTION;
D O I
10.1007/s00521-019-04476-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cross-modal retrieval is developed rapidly because it can process the data among different modalities. Aiming at solving the problem that the text and image sometimes cannot perform the true and accurate analysis of the material, a system of audiovisual cross-modal retrieval on material surface is proposed. First, we use local receptive fields-based extreme learning machine to extract sound and image features, and then the sound and image features are mapped to the subspace using canonical correlation analysis and retrieved by Euclidean distance. Finally, the process of audiovisual cross-modal retrieval is realized by the system. The experimental results show that the proposed system has a good application effect on wood. The designed system provides a new idea for research in the field of material identification.
引用
收藏
页码:14301 / 14309
页数:9
相关论文
共 50 条
  • [1] Audiovisual cross-modal material surface retrieval
    Zhuokun Liu
    Huaping Liu
    Wenmei Huang
    Bowen Wang
    Fuchun Sun
    [J]. Neural Computing and Applications, 2020, 32 : 14301 - 14309
  • [2] Surface Material Retrieval Using Weakly Paired Cross-Modal Learning
    Liu, Huaping
    Wang, Feng
    Sun, Fuchun
    Fang, Bin
    [J]. IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2019, 16 (02) : 781 - 791
  • [3] Cross-Modal Surface Material Retrieval Using Discriminant Adversarial Learning
    Zheng, Wendong
    Liu, Huaping
    Wang, Bowen
    Sun, Fuchun
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (09) : 4978 - 4987
  • [4] Adversarial Cross-Modal Retrieval
    Wang, Bokun
    Yang, Yang
    Xu, Xing
    Hanjalic, Alan
    Shen, Heng Tao
    [J]. PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 154 - 162
  • [5] HCMSL: Hybrid Cross-modal Similarity Learning for Cross-modal Retrieval
    Zhang, Chengyuan
    Song, Jiayu
    Zhu, Xiaofeng
    Zhu, Lei
    Zhang, Shichao
    [J]. ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2021, 17 (01)
  • [6] Cross-modal noise compensation in audiovisual words
    Martijn Baart
    Blair C. Armstrong
    Clara D. Martin
    Ram Frost
    Manuel Carreiras
    [J]. Scientific Reports, 7
  • [7] Cross-modal cueing in audiovisual spatial attention
    Blurton, Steven P.
    Greenlee, Mark W.
    Gondan, Matthias
    [J]. ATTENTION PERCEPTION & PSYCHOPHYSICS, 2015, 77 (07) : 2356 - 2376
  • [8] Cross-modal cueing in audiovisual spatial attention
    Steven P. Blurton
    Mark W. Greenlee
    Matthias Gondan
    [J]. Attention, Perception, & Psychophysics, 2015, 77 : 2356 - 2376
  • [9] Cross-modal noise compensation in audiovisual words
    Baart, Martijn
    Armstrong, Blair C.
    Martin, Clara D.
    Frost, Ram
    Carreiras, Manuel
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [10] Cross-Modal Hashing for Material Surface Properties Fusion
    Zhao, Wenying
    Xu, Qian
    Wangand, Haoyu
    Ye, Zhanyuan
    [J]. 2023 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING, IWCMC, 2023, : 194 - 198