Modular Neural Control for Object Transportation of a Bio-inspired Hexapod Robot

被引:2
|
作者
Sorensen, Chris Tryk Lund [1 ]
Manoonpong, Poramate [1 ]
机构
[1] Univ Southern Denmark, Ctr BioRobot, Maersk Mc Kinney Moller Inst, Embodied AI & Neurorobot Lab, Odense M, Denmark
来源
From Animals to Animats 14 | 2016年 / 9825卷
关键词
Object manipulation; Locomotion; Modular neural network; Central pattern generator; Walking machines; Autonomous robots; WALKING; GAITS;
D O I
10.1007/978-3-319-43488-9_7
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
Insects, like dung beetles, can perform versatile motor behaviors including walking, climbing an object (i.e., dung ball), as well as manipulating and transporting it. To achieve such complex behaviors for artificial legged systems, we present here modular neural control of a bio-inspired hexapod robot. The controller utilizes discrete-time neurodynamics and consists of seven modules based on three generic neural networks. One is a neural oscillator network serving as a central pattern generator (CPG) which generates basic rhythmic patterns. The other two networks are so-called velocity regulating and phase switching networks. They are used for regulating the rhythmic patterns and changing their phase. As a result, the modular neural control enables the hexapod robot to walk and climb a large cylinder object with a diameter of 18 cm (i.e.,approximate to 2.8 times the robot's body height). Additionally, it can also generate different hind leg movements for different object manipulation modes, like soft and hard pushing. Combining these pushing modes, the robot can quickly transport the object across an obstacle with a height up to 10 cm (i.e., approximate to 1.5 times the robot's body height). The controller was developed and evaluated using a physical simulation environment.
引用
收藏
页码:67 / 78
页数:12
相关论文
共 50 条
  • [1] Overview of Bio-Inspired Control Mechanisms for Hexapod Robot
    Zak, Marek
    Rozman, Jaroslav
    Zboril, Frantisek V.
    [J]. 2015 15TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA), 2015, : 160 - 165
  • [2] Design of a Stepping Hexapod Bio-Inspired Robot
    Dologa, Razvan Stefan
    Valean, Honoriu
    Ianosi, Alexandru
    [J]. 2024 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION, QUALITY AND TESTING, ROBOTICS, AQTR, 2024, : 143 - 148
  • [3] Simulation of a Robot in Bio-Inspired Hexapod Tenebrio
    Pablo Rodriguez-Calderon, Juan
    Fernanda Ramos-Parra, Maria
    Vladimir Pena-Giraldo, Mauricio
    [J]. REVISTA DIGITAL LAMPSAKOS, 2015, (14): : 33 - 39
  • [4] Neural & Bio-inspired Processing and Robot Control
    Khan, Ameer Hamza
    Li, Shuai
    Zhou, Xuefeng
    Li, Yangming
    Khan, Muhammad Umer
    Luo, Xin
    Wang, Huanqing
    [J]. FRONTIERS IN NEUROROBOTICS, 2018, 12
  • [5] Adaptive Locomotion Control of a Hexapod Robot via Bio-Inspired Learning
    Ouyang, Wenjuan
    Chi, Haozhen
    Pang, Jiangnan
    Liang, Wenyu
    Ren, Qinyuan
    [J]. FRONTIERS IN NEUROROBOTICS, 2021, 15
  • [6] A bio-inspired apodal and modular robot
    Guimaraes, Pedro P. S.
    Nunes, Matheus M.
    Galembeck, Thais F.
    Kalejaiye, Lucas Bamidele T.
    Tenorio, Ruan P. A.
    Viana, Dianne Magalhaes
    de Barros Vidal, Flavio
    Koike, Carla M. C. E. C.
    [J]. PROCEEDINGS OF 13TH LATIN AMERICAN ROBOTICS SYMPOSIUM AND 4TH BRAZILIAN SYMPOSIUM ON ROBOTICS - LARS/SBR 2016, 2016, : 61 - 66
  • [7] Hexapod Robot: Test Platform for Bio-Inspired Controllers
    Zak, Marek
    Rozman, Jaroslav
    Zboril, Frantisek V.
    [J]. PROCEEDINGS OF THE 2016 17TH INTERNATIONAL CARPATHIAN CONTROL CONFERENCE (ICCC), 2016, : 819 - 824
  • [8] Bio-inspired Step Crossing Algorithm for a Hexapod Robot
    Chou, Ya-Cheng
    Yu, Wei-Shun
    Huang, Ke-Jung
    Lin, Pei-Chun
    [J]. 2011 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2011, : 1493 - 1498
  • [9] Bio-inspired step-climbing in a hexapod robot
    Chou, Ya-Cheng
    Yu, Wei-Shun
    Huang, Ke-Jung
    Lin, Pei-Chun
    [J]. BIOINSPIRATION & BIOMIMETICS, 2012, 7 (03)
  • [10] Analysis of neural oscillator for bio-inspired robot control
    Zhang, D. G.
    Zhu, K. Y.
    Lan, L.
    [J]. 2006 IEEE CONFERENCE ON ROBOTICS, AUTOMATION AND MECHATRONICS, VOLS 1 AND 2, 2006, : 39 - +