Polygenic risk scores: a biased prediction?

被引:73
|
作者
De La Vega, Francisco M. [1 ,2 ]
Bustamante, Carlos D. [1 ,3 ,4 ]
机构
[1] Stanford Univ, Dept Biomed Data Sci, Sch Med, Campus Dr, Stanford, CA 94305 USA
[2] Fabr Genom Inc, Telegraph Ave, Oakland, CA 94612 USA
[3] Stanford Univ, Dept Genet, Sch Med, Campus Dr, Stanford, CA 94305 USA
[4] Chan Zuckerberg Biohub, Illinois St, San Francisco, CA 94158 USA
来源
GENOME MEDICINE | 2018年 / 10卷
关键词
D O I
10.1186/s13073-018-0610-x
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
A new study highlights the biases and inaccuracies of polygenic risk scores (PRS) when predicting disease risk in individuals from populations other than those used in their derivation. The design bias of workhorse tools used for research, particularly genotyping arrays, contributes to these distortions. To avoid further inequities in health outcomes, the inclusion of diverse populations in research, unbiased genotyping, and methods of bias reduction in PRS are critical.
引用
收藏
页数:3
相关论文
共 50 条
  • [21] Prediction of Coronary Artery Disease Subtypes With Polygenic Risk Scores
    Liou, Lathan
    Gonzalez, Judit Garcia
    Wu, Hei Man
    Wang, Zhe
    Choi, Shing Wan
    Hoggart, Clive
    Kontorovich, Amy R.
    Kovacic, Jason
    OReilly, Paul
    [J]. CIRCULATION, 2024, 149
  • [22] Polygenic and multifactorial scores for pancreatic ductal adenocarcinoma risk prediction
    Galeotti, Alice Alessandra
    Gentiluomo, Manuel
    Rizzato, Cosmeri
    Obazee, Ofure
    Neoptolemos, John P.
    Pasquali, Claudio
    Nentwich, Michael
    Cavestro, Giulia Martina
    Pezzilli, Raffaele
    Greenhalf, William
    Holleczek, Bernd
    Schroeder, Cornelia
    Schottker, Ben
    Ivanauskas, Audrius
    Ginocchi, Laura
    Key, Timothy J.
    Hegyi, Peter
    Archibugi, Livia
    Darvasi, Erika
    Basso, Daniela
    Sperti, Cosimo
    Bijlsma, Maarten F.
    Palmieri, Orazio
    Hlavac, Viktor
    Talar-Wojnarowska, Renata
    Mohelnikova-Duchonova, Beatrice
    Hackert, Thilo
    Vashist, Yogesh
    Strouhal, Ondrej
    van Laarhoven, Hanneke
    Tavano, Francesca
    Lovecek, Martin
    Dervenis, Christos
    Izbeki, Ferenc
    Padoan, Andrea
    Malecka-Panas, Ewa
    Maiello, Evaristo
    Vanella, Giuseppe
    Capurso, Gabriele
    Izbicki, Jakob R.
    Theodoropoulos, George E.
    Jamroziak, Krzysztof
    Katzke, Verena
    Kaaks, Rudolf
    Mambrini, Andrea
    Papanikolaou, Ioannis S.
    Szmola, Richard
    Szentesi, Andrea
    Kupcinskas, Juozas
    Bursi, Simona
    [J]. JOURNAL OF MEDICAL GENETICS, 2021, 58 (06) : 369 - 377
  • [23] Improving reporting standards for polygenic scores in risk prediction studies
    Wand, Hannah
    Lambert, Samuel A.
    Tamburro, Cecelia
    Iacocca, Michael A.
    O'Sullivan, Jack W.
    Sillari, Catherine
    Kullo, Iftikhar J.
    Rowley, Robb
    Dron, Jacqueline S.
    Brockman, Deanna
    Venner, Eric
    McCarthy, Mark I.
    Antoniou, Antonis C.
    Easton, Douglas F.
    Hegele, Robert A.
    Khera, Amit V.
    Chatterjee, Nilanjan
    Kooperberg, Charles
    Edwards, Karen
    Vlessis, Katherine
    Kinnear, Kim
    Danesh, John N.
    Parkinson, Helen
    Ramos, Erin M.
    Roberts, Megan C.
    Ormond, Kelly E.
    Khoury, Muin J.
    Janssens, A. Cecile J. W.
    Goddard, Katrina A. B.
    Kraft, Peter
    MacArthur, Jaqueline A. L.
    Inouye, Michael
    Wojcik, Genevieve L.
    [J]. NATURE, 2021, 591 (7849) : 211 - 219
  • [24] Sibling validation of polygenic risk scores and complex trait prediction
    Louis Lello
    Timothy G. Raben
    Stephen D. H. Hsu
    [J]. Scientific Reports, 10
  • [25] Improving reporting standards for polygenic scores in risk prediction studies
    Hannah Wand
    Samuel A. Lambert
    Cecelia Tamburro
    Michael A. Iacocca
    Jack W. O’Sullivan
    Catherine Sillari
    Iftikhar J. Kullo
    Robb Rowley
    Jacqueline S. Dron
    Deanna Brockman
    Eric Venner
    Mark I. McCarthy
    Antonis C. Antoniou
    Douglas F. Easton
    Robert A. Hegele
    Amit V. Khera
    Nilanjan Chatterjee
    Charles Kooperberg
    Karen Edwards
    Katherine Vlessis
    Kim Kinnear
    John N. Danesh
    Helen Parkinson
    Erin M. Ramos
    Megan C. Roberts
    Kelly E. Ormond
    Muin J. Khoury
    A. Cecile J. W. Janssens
    Katrina A. B. Goddard
    Peter Kraft
    Jaqueline A. L. MacArthur
    Michael Inouye
    Genevieve L. Wojcik
    [J]. Nature, 2021, 591 : 211 - 219
  • [26] Polygenic risk scores and machine learning improve glaucoma prediction
    Gao, Xiaoyi Raymond
    Lin, Yizi
    Chiariglione, Marion
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2021, 62 (08)
  • [27] Polygenic Scores in Epidemiology: Risk Prediction, Etiology, and Clinical Utility
    Brion S. Maher
    [J]. Current Epidemiology Reports, 2015, 2 (4) : 239 - 244
  • [28] Polygenic risk scores for prediction of breast cancer in Korean women
    Jee, Yon Ho
    Ho, Weang-Kee
    Park, Sohee
    Easton, Douglas
    Teo, Soo-Hwang
    Jung, Keum Ji
    Kraft, Peter
    [J]. CANCER RESEARCH, 2022, 82 (12)
  • [29] Sibling validation of polygenic risk scores and complex trait prediction
    Lello, Louis
    Raben, Timothy G.
    Hsu, Stephen D. H.
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [30] A developmental prediction of smoking behaviors from polygenic risk scores
    Carey, Bridget
    Elkins, Irene
    Iacono, William
    Keyes, Margaret
    McGue, Matthew
    [J]. BEHAVIOR GENETICS, 2016, 46 (06) : 775 - 775