Fractional Regression Hot Deck Imputation Weight Adjustment

被引:0
|
作者
Paik, Minhui [1 ]
Larsen, Michael D. [2 ]
机构
[1] Univ Toledo, Dept Math, Toledo, OH 43606 USA
[2] George Washington Univ, Dept Stat, Rockville, MD 20852 USA
基金
美国国家科学基金会;
关键词
Calibration; Missing at Random; Missing data; Multiple imputation; Quadratic programming; Regression weighting; MULTIPLE IMPUTATION;
D O I
10.1080/03610918.2012.667475
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Fractional regression hot deck imputation (FRHDI) imputes multiple values for each instance of a missing dependent variable. The imputed values are equal to the predicted value plus multiple random residuals. Fractional weights enable variance estimation and preserve correlations. In some circumstances with some starting weight values, existing procedures for computing FRHDI weights can produce negative values. We discuss procedures for constructing non-negative adjusted fractional weights for FRHDI and study performance of the algorithm using simulation. The algorithm can be used effectively with FRDHI procedures for handling missing data in the context of a complex sample survey.
引用
收藏
页码:1514 / 1532
页数:19
相关论文
共 50 条