van der Waals bilayer energetics: Generalized stacking-fault energy of graphene, boron nitride, and graphene/boron nitride bilayers

被引:112
|
作者
Zhou, Songsong [1 ]
Han, Jian [1 ]
Dai, Shuyang [1 ]
Sun, Jianwei [2 ]
Srolovitz, David J. [1 ,3 ]
机构
[1] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[2] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA
[3] Univ Penn, Dept Mech Engn & Appl Mech, Philadelphia, PA 19104 USA
关键词
SCANNING-TUNNELING-MICROSCOPY; INITIO MOLECULAR-DYNAMICS; DENSITY-FUNCTIONAL THEORY; TWIST BOUNDARIES; PEIERLS-NABARRO; BERRYS PHASE; LATTICE; AL; CONSTANTS; GRAPHITE;
D O I
10.1103/PhysRevB.92.155438
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The structure, thermodynamics, and band gaps in graphene/graphene, boron nitride/boron nitride, and graphene/boron nitride bilayers are determined using several different corrections to first-principles approaches to account for the dispersion interactions. While the density functional dispersion correction, van der Waals density functional, meta-generalized gradient approximation, and adiabatic fluctuation-dissipation theorem methods (ACFDT-RPA) all lead to qualitatively similar predictions, the best accuracy is obtained through the application of the computationally expensive ACFDT-RPA method. We present an accurate ACFDT-RPA-based method to determine bilayer structure, generalized stacking-fault energy (GSFE), and band gaps as a function of the relative translation states of the two layers. The GSFE data clearly identify all of the stable and metastable bilayer translations as well as the barriers between them. This is key for predicting the sliding, formation, and adhesion energies for homo-and hetero-bilayers, as well as for the determination of defects in such multilayer van der Waals systems. These, in turn, provide an accurate approach for determining and manipulating the spatial variation of electronic structure.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Electrically tunable quantum emitters in an ultrathin graphene-hexagonal boron nitride van der Waals heterostructure
    Scavuzzo, Alessio
    Mangel, Shai
    Park, Ji-Hoon
    Lee, Sanghyup
    Dinh Loc Duong
    Strelow, Christian
    Mews, Alf
    Burghard, Marko
    Kern, Klaus
    [J]. APPLIED PHYSICS LETTERS, 2019, 114 (06)
  • [32] The Impact of Interlayer Rotation on Thermal Transport Across Graphene/Hexagonal Boron Nitride van der Waals Heterostructure
    Ren, Weijun
    Ouyang, Yulou
    Jiang, Pengfei
    Yu, Cuiqian
    He, Jia
    Chen, Jie
    [J]. NANO LETTERS, 2021, 21 (06) : 2634 - 2641
  • [33] Benchmarking van der Waals-treated DFT: The case of hexagonal boron nitride and graphene on Ir(111)
    Schulz, Fabian
    Liljeroth, Peter
    Seitsonen, Ari P.
    [J]. PHYSICAL REVIEW MATERIALS, 2019, 3 (08):
  • [34] Energetics and kinetics of vacancies in monolayer graphene boron nitride heterostructures
    Ouyang, Bin
    Meng, Fanchao
    Song, Jun
    [J]. 2D MATERIALS, 2014, 1 (03):
  • [35] Pressure-induced commensurate stacking of graphene on boron nitride
    Matthew Yankowitz
    K. Watanabe
    T. Taniguchi
    Pablo San-Jose
    Brian J. LeRoy
    [J]. Nature Communications, 7
  • [36] Graphene on hexagonal boron nitride
    Yankowitz, Matthew
    Xue, Jiamin
    LeRoy, B. J.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (30)
  • [37] Pressure-induced commensurate stacking of graphene on boron nitride
    Yankowitz, Matthew
    Watanabe, K.
    Taniguchi, T.
    San-Jose, Pablo
    LeRoy, Brian J.
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [38] Dual-band perfect absorber based on a graphene/hexagonal boron nitride van der Waals hybrid structure
    Luo, Xin
    Cheng, Ziqiang
    Liu, Zhimin
    Xu, Liang
    Zhai, Xiang
    Wan, Wenqiang
    Zhou, Yanhong
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (37)
  • [39] Stacking in Bulk and Bilayer Hexagonal Boron Nitride
    Constantinescu, Gabriel
    Kuc, Agnieszka
    Heine, Thomas
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (03)
  • [40] Isotope engineering of van der Waals interactions in hexagonal boron nitride
    T. Q. P. Vuong
    S. Liu
    A. Van der Lee
    R. Cuscó
    L. Artús
    T. Michel
    P. Valvin
    J. H. Edgar
    G. Cassabois
    B. Gil
    [J]. Nature Materials, 2018, 17 (2) : 152 - 158