van der Waals bilayer energetics: Generalized stacking-fault energy of graphene, boron nitride, and graphene/boron nitride bilayers

被引:112
|
作者
Zhou, Songsong [1 ]
Han, Jian [1 ]
Dai, Shuyang [1 ]
Sun, Jianwei [2 ]
Srolovitz, David J. [1 ,3 ]
机构
[1] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[2] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA
[3] Univ Penn, Dept Mech Engn & Appl Mech, Philadelphia, PA 19104 USA
关键词
SCANNING-TUNNELING-MICROSCOPY; INITIO MOLECULAR-DYNAMICS; DENSITY-FUNCTIONAL THEORY; TWIST BOUNDARIES; PEIERLS-NABARRO; BERRYS PHASE; LATTICE; AL; CONSTANTS; GRAPHITE;
D O I
10.1103/PhysRevB.92.155438
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The structure, thermodynamics, and band gaps in graphene/graphene, boron nitride/boron nitride, and graphene/boron nitride bilayers are determined using several different corrections to first-principles approaches to account for the dispersion interactions. While the density functional dispersion correction, van der Waals density functional, meta-generalized gradient approximation, and adiabatic fluctuation-dissipation theorem methods (ACFDT-RPA) all lead to qualitatively similar predictions, the best accuracy is obtained through the application of the computationally expensive ACFDT-RPA method. We present an accurate ACFDT-RPA-based method to determine bilayer structure, generalized stacking-fault energy (GSFE), and band gaps as a function of the relative translation states of the two layers. The GSFE data clearly identify all of the stable and metastable bilayer translations as well as the barriers between them. This is key for predicting the sliding, formation, and adhesion energies for homo-and hetero-bilayers, as well as for the determination of defects in such multilayer van der Waals systems. These, in turn, provide an accurate approach for determining and manipulating the spatial variation of electronic structure.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Graphene on boron-nitride: Moire pattern in the van der Waals energy
    Neek-Amal, M.
    Peeters, F. M.
    [J]. APPLIED PHYSICS LETTERS, 2014, 104 (04)
  • [2] Van der Waals interaction in a boron nitride bilayer
    Hsing, Cheng-Rong
    Cheng, Ching
    Chou, Jyh-Pin
    Chang, Chun-Ming
    Wei, Ching-Ming
    [J]. NEW JOURNAL OF PHYSICS, 2014, 16
  • [3] van der Waals heterostructures combining graphene and hexagonal boron nitride
    Yankowitz, Matthew
    Ma, Qiong
    Jarillo-Herrero, Pablo
    LeRoy, Brian J.
    [J]. NATURE REVIEWS PHYSICS, 2019, 1 (02) : 112 - 125
  • [4] Quasiperiodic Van der Waals Heterostructures of Graphene and Hexagonal Boron Nitride
    Bhandary, Sumanta
    Haldar, Soumyajyoti
    Sanyal, Biplab
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2022, 259 (02):
  • [5] van der Waals heterostructures combining graphene and hexagonal boron nitride
    Matthew Yankowitz
    Qiong Ma
    Pablo Jarillo-Herrero
    Brian J. LeRoy
    [J]. Nature Reviews Physics, 2019, 1 : 112 - 125
  • [6] Van der Waals epitaxy and characterization of hexagonal boron nitride nanosheets on graphene
    Song, Yangxi
    Zhang, Changrui
    Li, Bin
    Ding, Guqiao
    Jiang, Da
    Wang, Haomin
    Xie, Xiaoming
    [J]. NANOSCALE RESEARCH LETTERS, 2014, 9 : 1 - 7
  • [7] Spintronics with graphene-hexagonal boron nitride van der Waals heterostructures
    Kamalakar, M. Venkata
    Dankert, Andre
    Bergsten, Johan
    Ive, Tommy
    Dash, Saroj P.
    [J]. APPLIED PHYSICS LETTERS, 2014, 105 (21)
  • [8] Defect mediated van der Waals epitaxy of hexagonal boron nitride on graphene
    Heilmann, M.
    Bashouti, M.
    Riechert, H.
    Lopes, J. M. J.
    [J]. 2D MATERIALS, 2018, 5 (02):
  • [9] Van der Waals epitaxy and characterization of hexagonal boron nitride nanosheets on graphene
    Yangxi Song
    Changrui Zhang
    Bin Li
    Guqiao Ding
    Da Jiang
    Haomin Wang
    Xiaoming Xie
    [J]. Nanoscale Research Letters, 9
  • [10] 3D-Graphene/Boron Nitride-stacking Material: a Fundamental van der Waals Heterostructure
    Peng Fu
    Ran Jia
    Jian Wang
    Roberts I. Eglitis
    Hongxing Zhang
    [J]. Chemical Research in Chinese Universities, 2018, 34 : 434 - 439