Communication: How to generate and measure anomalous diffusion in simple systems

被引:43
|
作者
Fulinski, A. [1 ]
机构
[1] Jagiellonian Univ, M Smoluchowski Inst Phys, PL-30059 Krakow, Poland
来源
JOURNAL OF CHEMICAL PHYSICS | 2013年 / 138卷 / 02期
关键词
TRANSPORT; PARTICLE;
D O I
10.1063/1.4775737
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
It is shown that in systems with time-dependent and/or spatially nonuniform temperature T(t, r), the diffusion (Brownian motion) is anomalous (AD). A few examples of simple arrangements, easy for experimental realization, are discussed in detail. Proposed measurements will enable also the observation of transitions from normal to anomalous diffusion. New effects are predicted: (i) zero-mean oscillations of T(t) accelerate AD (pumping effect), (ii) the combination of temporal and spatial variations of temperature may lead to superballistic AD, (iii) various forms of T(t, r) may result in non-algebraic AD including exponential diffusion. One can expect similar effects in inflationary systems with time-dependent metric and in expanding/contracting gases. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4775737]
引用
收藏
页数:4
相关论文
共 50 条
  • [1] On Anomalous Diffusion of Devices in Molecular Communication Systems
    Chouhan, Lokendra
    Upadhyay, Prabhat Kumar
    Sharma, Prabhat Kumar
    Salhab, Anas M.
    [J]. IEEE TRANSACTIONS ON MOLECULAR BIOLOGICAL AND MULTI-SCALE COMMUNICATIONS, 2022, 8 (03): : 207 - 211
  • [2] Anomalous diffusion and response in branched systems: a simple analysis
    Forte, Giuseppe
    Burioni, Raffaella
    Cecconi, Fabio
    Vulpiani, Angelo
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2013, 25 (46)
  • [3] A simple example of anomalous diffusion
    Aslangul, C
    [J]. PHYSICA A, 1996, 226 (1-2): : 152 - 167
  • [4] Anomalous Diffusion in Molecular Communication
    Trang Ngoc Cao
    Dung Phuong Trinh
    Jeong, Youngmin
    Shin, Hyundong
    [J]. IEEE COMMUNICATIONS LETTERS, 2015, 19 (10) : 1674 - 1677
  • [5] Anomalous diffusion is a measure for cytoplasmic crowding
    Weiss, M
    Elsner, M
    Nilsson, T
    [J]. BIOPHYSICAL JOURNAL, 2005, 88 (01) : 165A - 165A
  • [6] How to generate and measure negative pressure in liquids?
    Imre, Attila R.
    [J]. Soft Matter Under Exogenic Impacts, 2007, 242 : 379 - 388
  • [7] How Can Anomalous-Diffusion Neural Networks Under Connectomics Generate Optimized Spatiotemporal Dynamics
    He, Jiajin
    Xiao, Min
    Yu, Wenwu
    Wang, Zhengxin
    Du, Xiangyu
    Zheng, Wei Xing
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [8] Communication: A scaling approach to anomalous diffusion
    Kneller, Gerald R.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (04):
  • [9] Ergodic Measure and Potential Control of Anomalous Diffusion
    Wen, Bao
    Li, Ming-Gen
    Liu, Jian
    Bao, Jing-Dong
    [J]. ENTROPY, 2023, 25 (07)
  • [10] A simple diffusion model showing anomalous scaling
    Rowlands, G.
    Sproft, J. C.
    [J]. PHYSICS OF PLASMAS, 2008, 15 (08)