Electroweak symmetry breaking and large extra dimensions

被引:63
|
作者
Hall, L [1 ]
Kolda, C
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94530 USA
[2] Lawrence Berkeley Lab, Theory Grp, Berkeley, CA 94530 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0370-2693(99)00618-8
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
If spacetime contains large compact extra dimensions, the fundamental mass scale of nature, ii, may be close to the weak scale, allowing gravitational physics to significantly modify electroweak symmetry breaking. Operators of the form (1/Lambda(2))\phi(dagger)D(mu)phi\(2) and (1/Lambda(2))phi(dagger)W(mu nu)B(mu nu)phi, where W-mu nu and B-mu nu are the SU(2) and U(1) field strengths and phi is the Higgs field, remove the precision electroweak bound on the Higgs boson mass for values of Lambda in a wide range: 4 TeV less than or similar to Lambda less than or similar to 11 TeV. Within this framework, there is no preference between a light Higgs boson, a heavy Higgs boson, or a non-linearly realized SU(2) x U(1) symmetry beneath Lambda. If there is a Higgs doublet, then operators of the form (1/Lambda(2))phi(dagger)phi(G(2),F-2), where G(mu nu) and F-mu nu are the QCD and electromagnetic field strengths, modify the production of the Higgs boson by gluon-gluon fusion, and the decay of the Higgs boson to yy, respectively. At Run II of the Tevatron collider, a yy signal for extra dimensions will be discovered if Lambda is below 2.5 (1) TeV for a Higgs boson of mass 100 (300) GeV, Furthermore, such a signal would point to gravitational physics, rather than to new conventional gauge theories at Lambda. The discovery potential of the LHC depends sensitively on whether the gravitational amplitudes interfere constructively or destructively with the standard model amplitudes, and ranges from Lambda = 3-10 (2-4) TeV for a light (heavy) Higgs boson. (C) 1999 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:213 / 223
页数:11
相关论文
共 50 条
  • [41] Fast electroweak symmetry breaking and cold electroweak baryogenesis
    Enqvist, Kari
    Stephens, Philip
    Taanila, Olli
    Tranberg, Anders
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2010, (09):
  • [42] Electroweak and flavor physics in extensions of the standard model with large extra dimensions
    Delgado, A
    Pomarol, A
    Quirós, M
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2000, (01): : 1 - 22
  • [43] Higgs bosons, electroweak symmetry breaking, and the physics of the Large Hadron Collider
    Quigg, Chris
    [J]. CONTEMPORARY PHYSICS, 2007, 48 (01) : 1 - 11
  • [44] Electroweak baryogenesis from exotic electroweak symmetry breaking
    Blinov, Nikita
    Kozaczuk, Jonathan
    Morrissey, David E.
    Tamarit, Carlos
    [J]. PHYSICAL REVIEW D, 2015, 92 (03)
  • [45] Dynamical generation of fuzzy extra dimensions, dimensional reduction and symmetry breaking
    Aschieri, Paolo
    Grammatikopoulos, Theodoros
    Steinacker, Harold
    Zoupanos, George
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2006, (09):
  • [46] Extra dimensions as a source of the electroweak model
    Bolokhov, S. V.
    Bronnikov, K. A.
    Rubin, S. G.
    [J]. PHYSICAL REVIEW D, 2011, 84 (04)
  • [47] Fully radiative electroweak symmetry breaking
    Cacciapaglia, G
    Csáki, C
    Park, SC
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2006, (03):
  • [48] Higgsless electroweak symmetry breaking at the LHC
    Oezcan, Veysi Erkcan
    [J]. 2007 EUROPHYSICS CONFERENCE ON HIGH ENERGY PHYSICS, PTS 1-12, 2008, 110
  • [49] Hyperscaling violation and electroweak symmetry breaking
    Elander, Daniel
    Lawrance, Robert
    Piai, Maurizio
    [J]. NUCLEAR PHYSICS B, 2015, 897 : 583 - 611
  • [50] Higgs physics and electroweak symmetry breaking
    Zerwas, PM
    [J]. ACTA PHYSICA POLONICA B, 1999, 30 (06): : 1871 - 1919