On the Apostol-Bernoulli Polynomials

被引:44
|
作者
Luo, Qiu-Ming [1 ]
机构
[1] Jiaozuo Univ, Dept Math, Jiaozuo City 454003, Henan, Peoples R China
来源
关键词
Bernoulli numbers; Bernoulli polynomials; Apostol-Bernoulli numbers; Apostol-Bernoulli polynomials; Gaussian hypergeometric functions; Stirling numbers of the second kind; Hurwitz Zeta functions; Lerch functional equation;
D O I
10.2478/BF02475959
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we obtain two new formulas of the Apostol-Bernoulli polynomials (see On the Lerch Zeta function. Pacific J. Math., 1 (1951), 161-167.), using the Gaussian hypergeometric functions and Hurwitz Zeta functions respectively, and give certain special cases and applications. (C) Central European Science Journals. All rights reserved.
引用
收藏
页码:509 / 515
页数:7
相关论文
共 50 条
  • [31] General convolution identities for Apostol-Bernoulli, Euler and Genocchi polynomials
    He, Yuan
    Kim, Taekyun
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (06): : 4780 - 4797
  • [32] MOBIUS INVERSION FORMULAE FOR APOSTOL-BERNOULLI TYPE POLYNOMIALS AND NUMBERS
    Bayad, A.
    Chikhi, J.
    MATHEMATICS OF COMPUTATION, 2013, 82 (284) : 2327 - 2332
  • [33] Hermite-based unified Apostol-Bernoulli, Euler and Genocchi polynomials
    Ozarslan, Mehmet Ali
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [34] A NEW FAMILY OF FUBINI TYPE NUMBERS AND POLYNOMIALS ASSOCIATED WITH APOSTOL-BERNOULLI NUMBERS AND POLYNOMIALS
    Kilar, Neslihan
    Simsek, Yilmaz
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (05) : 1605 - 1621
  • [35] SOME NEW GENERALIZATIONS AND APPLICATIONS OF THE APOSTOL-BERNOULLI, APOSTOL-EULER AND APOSTOL-GENOCCHI POLYNOMIALS
    Srivastava, H. M.
    Masjed-Jamei, M.
    Beyki, M. R.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2019, 49 (02) : 681 - 697
  • [36] Higher-Order Convolutions for Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi Polynomials
    He, Yuan
    Araci, Serkan
    Srivastava, Hari M.
    Abdel-Aty, Mahmoud
    MATHEMATICS, 2018, 6 (12):
  • [37] Some generalized Lagrange-based Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials
    Srivastava, H. M.
    Ozarslan, M. A.
    Kaanoglu, C.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2013, 20 (01) : 110 - 120
  • [38] Hermite-based unified Apostol-Bernoulli, Euler and Genocchi polynomials
    Mehmet Ali Özarslan
    Advances in Difference Equations, 2013
  • [39] Some generalized Lagrange-based Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials
    H. M. Srivastava
    M. A. Özarslan
    C. Kaanoğlu
    Russian Journal of Mathematical Physics, 2013, 20 : 110 - 120
  • [40] Some new classes of degenerated generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials
    Ramirez, W.
    Cesarano, C.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2022, 14 (02) : 354 - 363