Plaid models for gene expression data

被引:4
|
作者
Lazzeroni, L
Owen, A
机构
[1] Stanford Univ, Sch Med, Dept Hlth Res & Policy, Div Biostat, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
关键词
microarrays; SVD; transposable data; unsupervised learning;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Motivated by genetic expression data, we introduce plaid models. These axe a form of two-sided cluster analysis that allows clusters to overlap. Plaid models also incorporate additive two way ANOVA models within the two-sided clusters. Using these models we find interpretable structure in some yeast expression data, as well as in some nutrition data and some foreign exchange data.
引用
下载
收藏
页码:61 / 86
页数:26
相关论文
共 50 条
  • [21] Inducing biological models from temporal gene expression data
    Saito, K
    George, D
    Bay, S
    Shrager, J
    DISCOVERY SCIENCE, PROCEEDINGS, 2003, 2843 : 468 - 469
  • [22] The clustering of regression models method with applications in gene expression data
    Qin, LX
    Self, SG
    BIOMETRICS, 2006, 62 (02) : 526 - 533
  • [23] Computational models of coherent and transparent plaid motion
    Langley, K
    VISION RESEARCH, 1999, 39 (01) : 87 - 108
  • [24] Gene expression data classification using topology and machine learning models
    Tamal K. Dey
    Sayan Mandal
    Soham Mukherjee
    BMC Bioinformatics, 22
  • [25] IntLIM: integration using linear models of metabolomics and gene expression data
    Siddiqui, Jalal K.
    Baskin, Elizabeth
    Liu, Mingrui
    Cantemir-Stone, Carmen Z.
    Zhang, Bofei
    Bonneville, Russell
    McElroy, Joseph P.
    Coombes, Kevin R.
    Mathe, Ewy A.
    BMC BIOINFORMATICS, 2018, 19
  • [26] Bayesian factor models for the detection of coherent patterns in gene expression data
    Mayrink, Vinicius D.
    Lucas, Joseph E.
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2015, 29 (01) : 1 - 33
  • [27] A class of models for analyzing GeneChip® gene expression analysis array data
    Wenhong Fan
    Joel I Pritchard
    James M Olson
    Najma Khalid
    Lue Ping Zhao
    BMC Genomics, 6
  • [28] SPARSE LATENT FACTOR MODELS WITH INTERACTIONS: ANALYSIS OF GENE EXPRESSION DATA
    Mayrink, Vinicius Diniz
    Lucas, Joseph Edward
    ANNALS OF APPLIED STATISTICS, 2013, 7 (02): : 799 - 822
  • [29] HMMGEP: clustering gene expression data using hidden Markov models
    Ji, XL
    Yuan, Y
    Li, YD
    Sun, ZR
    BIOINFORMATICS, 2004, 20 (11) : 1799 - 1800
  • [30] Probabilistic lung cancer models conditioned on gene expression microarray data
    Friedman, C
    Cao, WB
    Fan, C
    METHODS OF MICROARRAY DATA ANALYSIS IV, 2005, : 133 - 146