Effects of atorvastatin on CYP3A4 and CYP3A5 mRNA expression in mononuclear cells and CYP3A activity in hypercholeresterolemic patients

被引:19
|
作者
Willrich, Maria Alice V. [1 ]
Rodrigues, Alice C. [1 ]
Cerda, Alvaro [1 ]
Genvigir, Fabiana D. V. [1 ]
Arazi, Simone S. [1 ]
Dorea, Egidio L. [2 ]
Bernik, Marcia M. S. [2 ]
Bertolami, Marcelo C. [3 ]
Faludi, Andre [3 ]
Largura, Alvaro [4 ]
Baudhuin, Linnea M. [5 ]
Bryant, Sandra C. [6 ]
Hirata, Mario Hiroyuki [1 ]
Crespo Hirata, Rosario Dominguez [1 ]
机构
[1] Univ Sao Paulo, Sch Pharmaceut Sci, Dept Clin & Toxicol Anal, BR-05508900 Sao Paulo, Brazil
[2] Univ Sao Paulo, Univ Hosp, BR-05508900 Sao Paulo, Brazil
[3] Dante Pazzanezze Inst Cardiol, Sao Paulo, Brazil
[4] Paranalise Lab, Curitiba, PR, Brazil
[5] Mayo Clin, Dept Lab Med & Pathol, Rochester, MN USA
[6] Mayo Clin, Div Biomed Stat & Informat, Rochester, MN USA
基金
巴西圣保罗研究基金会;
关键词
Pharmacogenomics; Atorvastatin; CYP3A4; CYP3A5; rnRNA expression; CYP3A activity; COA REDUCTASE INHIBITORS; DRUG-INTERACTIONS; GENE-EXPRESSION; LINKAGE PHASE; CHOLESTEROL; 6-BETA-HYDROXYCORTISOL; 25-HYDROXYLATION; LYMPHOCYTES; TRANSPORTER; VARIABILITY;
D O I
10.1016/j.cca.2013.03.007
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
Background: Variability of response to statins has been related to polymorphisms in genes involved in cholesterol homeostasis and statin metabolism, such as CYP3A4 and CYP3A5. We investigated the effects of atorvastatin on CYP3A4 and CYP3A5 mRNA expression in mononuclear cells and on CYP3A activity and their interactions with common variants. Methods: Unrelated individuals (n = 121) with hypercholesterolemia (HC) were treated with atorvastatin (10 mg/day/4 weeks). Ninety-two normolipidemic (NL) subjects were selected as a control group. Genotype analysis of CYP3A4*1B (rs2740574), CYP3A4*22 (rs35599367), CYP3A5*3C (rs776746), and CYP3A5*1D (rs15524) and mRNA levels in peripheral blood mononuclear cells (PBMCs) were estimated. CYP3A activity was phenotyped by the urinary cortisol to 6-beta-hydroxy-cortisol ratio. Results: LDL cholesterol reduction in response to atorvastatin was positively correlated with change in CYP3A4 (R-2 = 0.039, p = 0.037) and CYP3A5 (R-2 = 0.047, p = 0.019) mRNA levels and negatively correlated with CYP3A activity (R-2 = 0.071, p = 0.022). CYP3A5*3C (AGT haplotype) was associated to lower basal CYP3A5 mRNA expression in HC (p < 0.045), however none of the haplotype groups impacted treatment. Conclusion: It is likely that cholesterolemia status changes promoted by atonrastatin play a role in regulating CYP3A4 and CYP3A5 mRNA expression in PBMCs, as well as CYP3A activity. CYP3A5*3C (AGT haplotype) also contributes for the variability of CYP3A5 mRNA levels in PBMCs. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:157 / 163
页数:7
相关论文
共 50 条
  • [31] Differential regulation of human CYP3A4 and CYP3A5 genes in lung cells
    Biggs, JS
    Yost, GS
    [J]. DRUG METABOLISM REVIEWS, 2002, 34 : 26 - 26
  • [32] Regulation of human CYP3A4 and CYP3A5 genes in lung cells.
    Biggs, JS
    Raunio, H
    Hakkola, J
    Pelkonen, O
    Yost, GS
    [J]. FASEB JOURNAL, 2002, 16 (04): : A180 - A180
  • [33] CYP3A and CYP2C19 activity in urine in relation to CYP3A4, CYP3A5, and CYP2C19 polymorphisms in Russian peptic ulcer patients taking omeprazole
    Denisenko, Natalia P.
    Sychev, Dmitriy A.
    Sizova, Zhanna M.
    Smirnov, Valeriy V.
    Ryzhikova, Kristina A.
    Sozaeva, Zhannet A.
    Grishina, Elena A.
    [J]. PHARMACOGENOMICS & PERSONALIZED MEDICINE, 2018, 11 : 107 - 112
  • [34] Composite CYP3A (CYP3A4 and CYP3A5) phenotypes and influence on tacrolimus dose adjusted concentrations in adult heart transplant recipients
    Michelle Liu
    Savine Hernandez
    Christina L. Aquilante
    Kimberly M. Deininger
    Joann Lindenfeld
    Kelly H. Schlendorf
    Sara L. Van Driest
    [J]. The Pharmacogenomics Journal, 2024, 24
  • [35] Influence of CYP3A4, CYP3A5, and ABCB1 genotype and expression on budesonide pharmacokinetics: A possible role of intestinal CYP3A4 expression
    Ufer, M.
    Dilger, K.
    Leschhorn, L.
    Daufresne, L. M.
    Mosyagin, I.
    Rosenstiel, P.
    Haesler, R.
    Kuehbacher, T.
    Nikolaus, S.
    Schreiber, S.
    Cascorbi, I.
    [J]. CLINICAL PHARMACOLOGY & THERAPEUTICS, 2008, 84 (01) : 43 - 46
  • [36] EFFECT OF CYP3A4*22, CYP3A5*3 AND CYP3A COMBINED GENOTYPES ON ENDOXIFEN SERUM CONCENTRATIONS IN BREAST CANCER PATIENTS USING TAMOXIFEN.
    Spitman, A. B. Sanchez
    Moes, D. -J. A.
    Gelderblom, H.
    Dezentje, V. O.
    Swen, J. J.
    Guchelaar, H. -J.
    [J]. CLINICAL PHARMACOLOGY & THERAPEUTICS, 2018, 103 : S48 - S48
  • [37] Composite CYP3A (CYP3A4 and CYP3A5) phenotypes and influence on tacrolimus dose adjusted concentrations in adult heart transplant recipients
    Liu, Michelle
    Hernandez, Savine
    Aquilante, Christina L.
    Deininger, Kimberly M.
    Lindenfeld, Joann
    Schlendorf, Kelly H.
    Van Driest, Sara L.
    [J]. PHARMACOGENOMICS JOURNAL, 2024, 24 (02):
  • [38] Ethnic differences between Japanese and Caucasians in the expression levels of mRNAs for CYP3A4, CYP3A5 and CYP3A7: lack of co-regulation of the expression of CYP3A in Japanese livers
    Yamaori, S
    Yamazaki, H
    Iwano, S
    Kiyotani, K
    Matsumura, K
    Saito, T
    Parkinson, A
    Nakagawa, K
    Kamataki, T
    [J]. XENOBIOTICA, 2005, 35 (01) : 69 - 83
  • [39] Regulatory variants in a novel distal enhancer regulate the expression of CYP3A4 and CYP3A5
    Collins, Joseph M.
    Nworu, Adaeze C.
    Mohammad, Somayya J.
    Li, Liang
    Li, Chengcheng
    Li, Chuanjiang
    Schwendeman, Ethan
    Cefalu, Mattew
    Abdel-Rasoul, Mahmoud
    Sun, Jessie W.
    Smith, Sakima A.
    Wang, Danxin
    [J]. CTS-CLINICAL AND TRANSLATIONAL SCIENCE, 2022, 15 (11): : 2720 - 2731
  • [40] Genetic Variants of CYP3A4 and CYP3A5 in Cynomolgus and Rhesus Macaques
    Uno, Yasuhiro
    Matsushita, Akinori
    Osada, Naoki
    Uehara, Shotaro
    Kohara, Sakae
    Nagata, Ryoichi
    Fukuzaki, Koichiro
    Utoh, Masahiro
    Murayama, Norie
    Yamazaki, Hiroshi
    [J]. DRUG METABOLISM AND DISPOSITION, 2010, 38 (02) : 209 - 214