Multi-Task Learning for Cross-Lingual Abstractive Summarization

被引:0
|
作者
Takase, Sho [1 ]
Okazaki, Naoaki [1 ]
机构
[1] Tokyo Inst Technol, Tokyo, Japan
关键词
summarization; machine translation; cross-lingual summarization;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a multi-task learning framework for cross-lingual abstractive summarization to augment training data. Recent studies constructed pseudo cross-lingual abstractive summarization data to train their neural encoder-decoders. Meanwhile, we introduce existing genuine data such as translation pairs and monolingual abstractive summarization data into training. Our proposed method, Transum, attaches a special token to the beginning of the input sentence to indicate the target task. The special token enables us to incorporate the genuine data into the training data easily. The experimental results show that Transum achieves better performance than the model trained with only pseudo cross-lingual summarization data. In addition, we achieve the top ROUGE score on Chinese-English and Arabic-English abstractive summarization. Moreover, Transum also has a positive effect on machine translation. Experimental results indicate that Transum improves the performance from the strong baseline, Transformer, in Chinese-English, Arabic-English, and English-Japanese translation datasets.
引用
收藏
页码:3008 / 3016
页数:9
相关论文
共 50 条
  • [41] CAKES: Cross-lingual Wikipedia Knowledge Enrichment and Summarization
    Fionda, Valeria
    Pirro, Giuseppe
    [J]. 20TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (ECAI 2012), 2012, 242 : 901 - 902
  • [42] Cross-Lingual Korean Speech-to-Text Summarization
    Yoon, HyoJeon
    Dinh Tuyen Hoang
    Ngoc Thanh Nguyen
    Hwang, Dosam
    [J]. INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2019, PT I, 2019, 11431 : 198 - 206
  • [43] SummaReranker: A Multi-Task Mixture-of-Experts Re-ranking Framework for Abstractive Summarization
    Ravaut, Mathieu
    Joty, Shafiq
    Chen, Nancy F.
    [J]. PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 4504 - 4524
  • [44] clstk: The Cross-Lingual Summarization Tool-Kit
    Jhaveri, Nisarg
    Gupta, Manish
    Varma, Vasudeva
    [J]. PROCEEDINGS OF THE TWELFTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM'19), 2019, : 766 - 769
  • [45] Cross-lingual Continual Learning
    M'hamdi, Meryem
    Ren, Xiang
    May, Jonathan
    [J]. PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, VOL 1, 2023, : 3908 - 3943
  • [46] Cross-lingual Cross-temporal Summarization: Dataset, Models, Evaluation
    Zhang, Ran
    Ouni, Jihed
    Eger, Steffen
    [J]. COMPUTATIONAL LINGUISTICS, 2024, 50 (03) : 1001 - 1047
  • [47] Cross-lingual transfer of abstractive summarizer to less-resource language
    Aleš Žagar
    Marko Robnik-Šikonja
    [J]. Journal of Intelligent Information Systems, 2022, 58 : 153 - 173
  • [48] MULTI-LEVEL CONTRASTIVE LEARNING FOR CROSS-LINGUAL ALIGNMENT
    Chen, Beiduo
    Guo, Wu
    Gu, Bin
    Liu, Quan
    Wang, Yongchao
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 7947 - 7951
  • [49] Multi-Adversarial Learning for Cross-Lingual Word Embeddings
    Wang, Haozhou
    Henderson, James
    Merlo, Paola
    [J]. 2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), 2021, : 463 - 472
  • [50] Cross-lingual transfer of abstractive summarizer to less-resource language
    Zagar, Ales
    Robnik-Sikonja, Marko
    [J]. JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2022, 58 (01) : 153 - 173