An Algorithm for Mining Frequent Stream Data Items Using Hash Function and Fading Factor

被引:1
|
作者
Mei, Qingling [1 ]
Chen, Ling [1 ]
机构
[1] Yangzhou Univ, Dept Comp Sci, Yangzhou 225009, Peoples R China
关键词
Stream data mining; frequent data item; fading factor; Hash function; ITEMSETS;
D O I
10.4028/www.scientific.net/AMM.130-134.2661
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A new algorithm to mine the frequent items in data stream is presented. The algorithm adopts a time fading factor to emphasize the importance of the relatively newer data, and records the densities of the data items in Hash tables. For a given threshold of density S and an integer k, our algorithm can mine the top k frequent items. Computation time for processing each data item is O(1). Experimental results show that the algorithm outperforms other methods in terms of accuracy, memory requirement, and processing speed.
引用
收藏
页码:2661 / 2665
页数:5
相关论文
共 50 条
  • [41] Research on Data stream Mining Algorithm for Frequent Itemsets Based on Sliding Window Model
    Wang, Hongmei
    Li, Fentian
    Tang, Dongkai
    Wang, Zeru
    [J]. 2017 IEEE 2ND INTERNATIONAL CONFERENCE ON BIG DATA ANALYSIS (ICBDA), 2017, : 264 - 268
  • [42] Improved data mining algorithms for frequent patterns with composite items
    Wang, Ke
    Liu, James N. K.
    Ma, Wei-Min
    [J]. CHALLENGES IN INFORMATION TECHNOLOGY MANAGEMENT, 2008, : 10 - +
  • [43] A New Closed Frequent Items Mining from Tree Data
    Du, Qinsheng
    Li, Xiongfei
    Li, Wei
    [J]. 2013 3RD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT), 2013, : 400 - 403
  • [44] Clustering data stream with uncertainty using belief function theory and fading function
    Hamidzadeh, Javad
    Ghadamyari, Reyhaneh
    [J]. SOFT COMPUTING, 2020, 24 (12) : 8955 - 8974
  • [45] Clustering data stream with uncertainty using belief function theory and fading function
    Javad Hamidzadeh
    Reyhaneh Ghadamyari
    [J]. Soft Computing, 2020, 24 : 8955 - 8974
  • [46] Frequent pattern mining on stream data using Hadoop CanTree-GTree
    Kusumakumari, Vanteru
    Sherigar, Deepthi
    Chandran, Roshni
    Patil, Nagamma
    [J]. 7TH INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING & COMMUNICATIONS (ICACC-2017), 2017, 115 : 266 - 273
  • [47] Mining frequent subtree on paging XML data stream
    Department of Compute Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
    不详
    不详
    不详
    [J]. Jisuanji Yanjiu yu Fazhan, 9 (1926-1936):
  • [48] Frequent items query algorithm for uncertain sensing data
    [J]. Wang, S. (wangsh@mail.neu.edu.cn), 1600, Science Press (36):
  • [49] Approximating Frequent Items in Asynchronous Data Stream over a Sliding Window
    Ting, Hing-Fung
    Lee, Lap-Kei
    Chan, Ho-Leung
    Lam, Tak-Wah
    [J]. ALGORITHMS, 2011, 4 (03) : 200 - 222
  • [50] Approximating Frequent Items in Asynchronous Data Stream over a Sliding Window
    Chan, Ho-Leung
    Lam, Tak-Wah
    Lee, Lap-Kei
    Ting, Hing-Fung
    [J]. APPROXIMATION AND ONLINE ALGORITHMS, 2010, 5893 : 49 - 61