Germination and Early Growth Performances of Mung Bean (Vigna radiata (L.) Wilczek) Genotypes Under Salinity Stress

被引:3
|
作者
Benlioglu, Berk [1 ]
Ozkan, Ugur [1 ]
机构
[1] Ankara Univ, Fac Agr, Field Crops Dept, Diskapi, Turkey
关键词
Vigna radiata (L.) Wilczek; Abiotic stress; NaCl; Germination rate; Early seedling; SALT TOLERANCE; PRETREATMENT; PLANTS;
D O I
10.33462/jotaf.677216
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Salinity is the abiotic stress factor that most restricts agricultural production after drought. In this study, mung beans (Vigna radiata (L.) Wilczek) genotypes were analyzed the resistance performance to salinity stress in germination stage and early seedling stage. In accordance with this purpose, 17 mung bean genotypes were used in the study. Genotypes used in the study were treated with distilled water (0) and 2 different salt doses (4 and 8 mmhos cm(-1) NaCl) as the control group. Petri dishes were allowed to stay at room temperature (25 degrees C) for 9 days, and salt solution was added when required. The data obtained from the study, were obtained on the average of the measurements made on the 9th day and then analyzed. Germination power, root length, shoot length, fresh weight and dry weight were determined as the analyzed parameters in the study. Increasing NaCl doses generally affected all parameters negatively. According to the analysis of variance with the results obtained, the genotypic effect was found to be statistically significant in all parameters, which was analyzed in this study. Stress dose was found to be statistically significant in all parameters except the dry weight parameter. In addition to this, genotype x stress dose interaction was determined to be statistically significant in germination power, root length and shoot length parameters. Genotypes, which were numbered No.20 and No.24, had maximum results in statistically important parameters such as germination power (97.00-94.11%), root length (1.557-1.563 cm) and shoot length (2.033-1.793 cm) under applied highest salt dose. As a result of this, No.20 and No.24 genotypes were determined to be the more tolerant to salt stress than other genotypes used in the study. As a conclusion, it is suggested that No.20 and No.24 genotypes can be used as parental plants in the breeding of new varieties tolerant to salinity in the future.
引用
收藏
页码:318 / 328
页数:11
相关论文
共 50 条
  • [31] Effect of oxidation and esterification on functional properties of mung bean (Vigna radiata (L.) Wilczek) starch
    Bushra, Maisa
    Yun, Xu Xiao
    Pan, Si Yi
    Hydamaka, Arine
    Hua, Miao Wen
    Feng, Wang Lu
    EUROPEAN FOOD RESEARCH AND TECHNOLOGY, 2013, 236 (01) : 119 - 128
  • [32] Variation for hardseededness and related seed physical parameters in mung bean [Vigna radiata (L.) Wilczek]
    Paul, Debashis
    Chakrabarty, S. K.
    Dikshit, H. K.
    Singh, Y.
    INDIAN JOURNAL OF GENETICS AND PLANT BREEDING, 2018, 78 (03) : 333 - 341
  • [33] PHYSICOCHEMICAL BASIS FOR HARDSEEDEDNESS IN MUNG BEAN (VIGNA-RADIATA (L) WILCZEK)
    RODRIGUEZ, FM
    MENDOZA, EMT
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 1990, 38 (01) : 29 - 32
  • [34] Genetic variability, heritability and genetic advance in Mung bean (Vigna radiata L. Wilczek) accessions
    Degefa, Itefa
    Petros, Yohannes
    Andargie, Mebeaselassie
    PLANT SCIENCE TODAY, 2014, 1 (02): : 94 - 98
  • [35] Thiourea-induced metabolic changes in two mung bean [Vigna radiata (L.) Wilczek] (Fabaceae) varieties under salt stress
    Shagufta Perveen
    Rabia Farooq
    Muhammad Shahbaz
    Brazilian Journal of Botany, 2016, 39 : 41 - 54
  • [36] Thiourea-induced metabolic changes in two mung bean [Vigna radiata (L.) Wilczek] (Fabaceae) varieties under salt stress
    Perveen, Shagufta
    Farooq, Rabia
    Shahbaz, Muhammad
    BRAZILIAN JOURNAL OF BOTANY, 2016, 39 (01) : 41 - 54
  • [37] Genotype x environment interaction and yield stability analysis of mung bean (Vigna radiata (L.) Wilczek) genotypes in Northern Ethiopia
    Baraki, Fiseha
    Gebregergis, Zenawi
    Belay, Yirga
    Berhe, Muez
    Zibelo, Haile
    COGENT FOOD & AGRICULTURE, 2020, 6 (01):
  • [38] Physiological Phenotyping and Biochemical Characterization of Mung Bean (Vigna radiata L.) Genotypes for Salt and Drought Stress
    Patel, Mayur
    Gupta, Divya
    Saini, Amita
    Kumari, Asha
    Priya, Rishi
    Panda, Sanjib Kumar
    AGRICULTURE-BASEL, 2024, 14 (08):
  • [39] Caffeic acid inhibits in vitro rooting in mung bean [Vigna radiata (L.) Wilczek] hypocotyls by inducing oxidative stress
    Harminder Pal Singh
    Shalinder Kaur
    Daizy R. Batish
    Ravinder Kumar Kohli
    Plant Growth Regulation, 2009, 57 : 21 - 30
  • [40] Caffeic acid inhibits in vitro rooting in mung bean [Vigna radiata (L.) Wilczek] hypocotyls by inducing oxidative stress
    Singh, Harminder Pal
    Kaur, Shalinder
    Batish, Daizy R.
    Kohli, Ravinder Kumar
    PLANT GROWTH REGULATION, 2009, 57 (01) : 21 - 30